4
votes

sorry for the lengthy post, I have a question about common crpytographic hashing algorithms, such as the SHA family, MD5, etc.

In general, such a hash algorithm cannot be injective, since the actual digest produced has usually a fixed length (e.g., 160 bits under SHA-1, etc.) whereas the space of possible messages to be digested is virtually infinite.

However, if we generate a digest of a message which is at most as long as the digest generated, what are the properties of the commonly used hashing algorithms? Are they likely to be injective on this limited message space? Are there algorithms, which are known to produce collisions even on messages whose bit lengths is shorter than the bit length of the digest produced?

I am actually looking for an algorithm, which has this property, i.e., which, at least in principle, may generate colliding hashes even for short input messages.

Background: We have a browser plug-in, which for every web-site visited, makes a server request asking, whether the web-site belongs to one of our known partners. But of course, we don't want to spy on our users. So, in order to make it hard to generate some kind of surf history, we do not actually send the URL visited, but a hash digest (currently, SHA-1) of some cleaned up version. On the server side, we have a table of hashes of well-known URIs, which is matched against the received hash. We can live with a certain amount of uncertainty here, since we consider not being able to track our users a feature, not a bug.

For obvious reasons, this scheme is pretty fuzzy and admits false positives as well as URIs not matched which should have.

So right now, we are considering changing the fingerprint generation to something, which has more structure, for example, instead of hashing the full (cleaned up) URI, we might instead:

  1. split the host name into components at "." and hash those individually
  2. check the path into components at "." and hash those individually

Join the resulting hashes into a fingerprint value. Example: hashing "www.apple.com/de/shop" using this scheme (and using Adler 32 as hash) might yield "46989670.104268307.41353536/19857610/73204162".

However, as such a fingerprint has a lot of structure (in particular, when compared to a plain SHA-1 digest), we might accidentally make it pretty easy again to compute actual URI visited by a user (for example, by using a pre-computed table of hash values for "common" compont values, such as "www").

So right now, I am looking for a hash/digest algorithm, which has a high rate of collisions (Adler 32 is seriously considered) even on short messages, so that the probability of a given component hash being unique is low. We hope, that the additional structure we impose provides us with enough additional information to as to improve the matching behaviour (i.e., lower the rate of false positives/false negatives).

3

3 Answers

3
votes

I do not believe hashes are guaranteed to be injective for messages the same size the digest. If they were, they would be bijective, which would be missing the point of a hash. This suggests that they are not injective for messages smaller than the digest either.

If you want to encourage collisions, i suggest you use any hash function you like, then throw away bits until it collides enough.

For example, throwing away 159 bits of a SHA-1 hash will give you a pretty high collision rate. You might not want to throw that many away.

However, what you are trying to achieve seems inherently dubious. You want to be able to tell that the URL is one of your ones, but not which one it is. That means you want your URLs to collide with each other, but not with URLs that are not yours. A hash function won't do that for you. Rather, because collisions will be random, since there are many more URLs which are not yours than which are (i assume!), any given level of collision will lead to dramatically more confusion over whether a URL is one of yours or not than over which of yours it is.

Instead, how about sending the list of URLs to the plugin at startup, and then having it just send back a single bit indicating if it's visiting a URL in the list? If you don't want to send the URLs explicitly, send hashes (without trying to maximise collisions). If you want to save space, send a Bloom filter.

1
votes

Since you're willing to accept a rate of false positives (that is, random sites identified as whitelisted when in fact they are not), a Bloom filter might be just the thing.

Each client downloads a Bloom filter containing the whole whitelist. Then the client has no need to otherwise communicate with the server, and there is no risk of spying.

At 2 bytes per URL, the false positive rate would be below 0.1%, and at 4 bytes per URL below 1 in 4 million.

Downloading the whole filter (and perhaps regular updates to it) is a large investment of bandwidth up front. But supposing that it has a million URLs on it (which seems quite a lot to me, given that you can probably apply some rules to canonicalize URLs before lookup), it's a 4MB download. Compare this with a list of a million 32 bit hashes: same size, but the false positive rate would be somewhere around 1 in 4 thousand, so the Bloom filter wins for compactness.

I don't know how the plugin contacts the server, but I doubt that you can get an HTTP transaction done in much under 1kB -- perhaps less with keep-alive connections. If filter updates are less frequent than one per 4k URL visits by a given user (or a smaller number if there are less than a million URLs, or greater than 1 in 4 million false positive probability), this has a chance of using less bandwidth than the current scheme, and of course leaks much less information about the user.

It doesn't work quite as well if you require new URLs to be whitelisted immediately, although I suppose the client could still hit the server at every page request, to check whether the filter has changed and if so download an update patch.

Even if the Bloom filter is too big to download in full (perhaps for cases where the client has no persistent storage and RAM is limited), then I think you could still introduce some information-hiding by having the client compute which bits of the Bloom filter it needs to see, and asking for those from the server. With a combination of caching in the client (the higher the proportion of the filter you have cached, the fewer bits you need to ask for and hence the less you tell the server), asking for a window around the actual bit you care about (so you don't tell the server exactly which bit you need), and the client asking for spurious bits it doesn't really need (hide the information in noise), I expect you could obfuscate what URLs you're visiting. It would take some analysis to prove how much that actually works, though: a spy would be aiming to find a pattern in your requests that's correlated with browsing a particular site.

0
votes

I'm under the impression that you actually want public key cryptography, where you provide the visitor with a public key used to encode the URL, and you decrypt the URL using the secret key.

There are JavaScript implementations a bit everywhere.