Managed to get it right!
- Runtime: O(n). I suspect it goes through an edge at most a constant number of times. No formal proof.
- Space: O(1). Only stores a few nodes. Does not create new nodes or edges, only rearranges them.
- Destructive: Yes. It flattens the tree, every node has the inorder successor as its right child, and null as the left.
The algorithm tries to flatten the binary tree by moving the whole left subtree of the current node to above it, making it the rightmost node of the subtree, then updating the current node to find further left subtrees in the newly discovered nodes. If we know both the left child and the predecessor of the current node, we can move the entire subtree in a few operations, in a similar manner to inserting a list into another. Such a move preserves the in-order sequence of the tree and it invariably makes the tree more right slanted.
There are three cases depending on the local configuration of nodes around the current one: left child is the same as the predecessor, left child is different from the predecessor, or no left subtree. The first case is trivial. The second case requires finding the predecessor, the third case requires finding a node on the right with a left subtree. Graphical representation helps in understanding them.
In the latter two cases we can run into cycles. Since we only traverse a list of the right childs, we can use Floyd's cycle detection algorithm to find and report loops. Sooner or later every cycle will be rotated into such a form.
#include <cstdio>
#include <iostream>
#include <queue>
#define null NULL
#define int32 int
using namespace std;
/**
* Binary tree node class
**/
template <class T>
class Node
{
public:
/* Public Attributes */
Node* left;
Node* right;
T value;
};
/**
* This exception is thrown when the flattener & cycle detector algorithm encounters a cycle
**/
class CycleException
{
public:
/* Public Constructors */
CycleException () {}
virtual ~CycleException () {}
};
/**
* Biny tree flattener and cycle detector class.
**/
template <class T>
class Flattener
{
public:
/* Public Constructors */
Flattener () :
root (null),
parent (null),
current (null),
top (null),
bottom (null),
turtle (null),
{}
virtual ~Flattener () {}
/* Public Methods */
/**
* This function flattens an alleged binary tree, throwing a new CycleException when encountering a cycle. Returns the root of the flattened tree.
**/
Node<T>* flatten (Node<T>* pRoot)
{
init(pRoot);
// Loop while there are left subtrees to process
while( findNodeWithLeftSubtree() ){
// We need to find the topmost and rightmost node of the subtree
findSubtree();
// Move the entire subtree above the current node
moveSubtree();
}
// There are no more left subtrees to process, we are finished, the tree does not contain cycles
return root;
}
protected:
/* Protected Methods */
void init (Node<T>* pRoot)
{
// Keep track of the root node so the tree is not lost
root = pRoot;
// Keep track of the parent of the current node since it is needed for insertions
parent = null;
// Keep track of the current node, obviously it is needed
current = root;
}
bool findNodeWithLeftSubtree ()
{
// Find a node with a left subtree using Floyd's cycle detection algorithm
turtle = parent;
while( current->left == null and current->right != null ){
if( current == turtle ){
throw new CycleException();
}
parent = current;
current = current->right;
if( current->right != null ){
parent = current;
current = current->right;
}
if( turtle != null ){
turtle = turtle->right;
}else{
turtle = root;
}
}
return current->left != null;
}
void findSubtree ()
{
// Find the topmost node
top = current->left;
// The topmost and rightmost nodes are the same
if( top->right == null ){
bottom = top;
return;
}
// The rightmost node is buried in the right subtree of topmost node. Find it using Floyd's cycle detection algorithm applied to right childs.
bottom = top->right;
turtle = top;
while( bottom->right != null ){
if( bottom == turtle ){
throw new CycleException();
}
bottom = bottom->right;
if( bottom->right != null ){
bottom = bottom->right;
}
turtle = turtle->right;
}
}
void moveSubtree ()
{
// Update root; if the current node is the root then the top is the new root
if( root == current ){
root = top;
}
// Add subtree below parent
if( parent != null ){
parent->right = top;
}
// Add current below subtree
bottom->right = current;
// Remove subtree from current
current->left = null;
// Update current; step up to process the top
current = top;
}
Node<T>* root;
Node<T>* parent;
Node<T>* current;
Node<T>* top;
Node<T>* bottom;
Node<T>* turtle;
private:
Flattener (Flattener&);
Flattener& operator = (Flattener&);
};
template <class T>
void traverseFlat (Node<T>* current)
{
while( current != null ){
cout << dec << current->value << " @ 0x" << hex << reinterpret_cast<int32>(current) << endl;
current = current->right;
}
}
template <class T>
Node<T>* makeCompleteBinaryTree (int32 maxNodes)
{
Node<T>* root = new Node<T>();
queue<Node<T>*> q;
q.push(root);
int32 nodes = 1;
while( nodes < maxNodes ){
Node<T>* node = q.front();
q.pop();
node->left = new Node<T>();
q.push(node->left);
nodes++;
if( nodes < maxNodes ){
node->right = new Node<T>();
q.push(node->right);
nodes++;
}
}
return root;
}
template <class T>
void inorderLabel (Node<T>* root)
{
int32 label = 0;
inorderLabel(root, label);
}
template <class T>
void inorderLabel (Node<T>* root, int32& label)
{
if( root == null ){
return;
}
inorderLabel(root->left, label);
root->value = label++;
inorderLabel(root->right, label);
}
int32 main (int32 argc, char* argv[])
{
if(argc||argv){}
typedef Node<int32> Node;
// Make binary tree and label it in-order
Node* root = makeCompleteBinaryTree<int32>(1 << 24);
inorderLabel(root);
// Try to flatten it
try{
Flattener<int32> F;
root = F.flatten(root);
}catch(CycleException*){
cout << "Oh noes, cycle detected!" << endl;
return 0;
}
// Traverse its flattened form
// traverseFlat(root);
}
bool containsCycle(Tree t) { return false; }
. Trees cannot contain cycles by definition. Did you mean to ask if any general graph contains a cycle? – Peter Alexander