I am using keras' pretrained resnet 101 v2 CNN model. I wanted to know what the size of the filter was. I tried checking my model's summary but it doesn't really tell me the size directly. is it a 2x2x2 matrix or a 3x3x3 or something else? The snippet of the model summary is:
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_3 (InputLayer) [(None, 255, 255, 3) 0
__________________________________________________________________________________________________
conv1_pad (ZeroPadding2D) (None, 261, 261, 3) 0 input_3[0][0]
__________________________________________________________________________________________________
conv1_conv (Conv2D) (None, 128, 128, 64) 9472 conv1_pad[0][0]
__________________________________________________________________________________________________
pool1_pad (ZeroPadding2D) (None, 130, 130, 64) 0 conv1_conv[0][0]
__________________________________________________________________________________________________
pool1_pool (MaxPooling2D) (None, 64, 64, 64) 0 pool1_pad[0][0]
__________________________________________________________________________________________________
conv2_block1_preact_bn (BatchNo (None, 64, 64, 64) 256 pool1_pool[0][0]
__________________________________________________________________________________________________
conv2_block1_preact_relu (Activ (None, 64, 64, 64) 0 conv2_block1_preact_bn[0][0]
__________________________________________________________________________________________________
conv2_block1_1_conv (Conv2D) (None, 64, 64, 64) 4096 conv2_block1_preact_relu[0][0]
__________________________________________________________________________________________________
conv2_block1_1_bn (BatchNormali (None, 64, 64, 64) 256 conv2_block1_1_conv[0][0]
__________________________________________________________________________________________________
conv2_block1_1_relu (Activation (None, 64, 64, 64) 0 conv2_block1_1_bn[0][0]
__________________________________________________________________________________________________
conv2_block1_2_pad (ZeroPadding (None, 66, 66, 64) 0 conv2_block1_1_relu[0][0]
__________________________________________________________________________________________________
conv2_block1_2_conv (Conv2D) (None, 64, 64, 64) 36864 conv2_block1_2_pad[0][0]
__________________________________________________________________________________________________
conv2_block1_2_bn (BatchNormali (None, 64, 64, 64) 256 conv2_block1_2_conv[0][0]
__________________________________________________________________________________________________
conv2_block1_2_relu (Activation (None, 64, 64, 64) 0 conv2_block1_2_bn[0][0]
__________________________________________________________________________________________________
conv2_block1_0_conv (Conv2D) (None, 64, 64, 256) 16640 conv2_block1_preact_relu[0][0]
__________________________________________________________________________________________________
conv2_block1_3_conv (Conv2D) (None, 64, 64, 256) 16640 conv2_block1_2_relu[0][0]