I don't think this problem maps cleanly to any of the classical scheduling literature. I'd try to solve it as an integer program using (e.g.) OR-Tools.
What makes this problem hard is that the order of the jobs is unknown. Otherwise, we could probably write a dynamic program. Handling continuous time efficiently would be tricky but doable.
Similarly, the natural first attempt for a mixed integer programming formulation would be to have a variable for the starting time of each job, but the overlap function is horribly non-convex, and I don't see a good way to encode using integer variables.
The formulation that I would try first would be to quantize time, then create a 0-1 variable x[j,s]
for each valid (job, start time) pair. Then we write constraints to force each job to be scheduled exactly once:
for all j, sum over s of x[j,s] = 1.
As for the objective, we have a couple of different choices. I'll show one, but there's a lot of flexibility as long as one unit of time with i + j
jobs running is worse than one unit with i
jobs and a different unit with j
jobs.
For each time t
, we make a non-negative integer variable y[t]
that will represent the number of excess jobs running at t
. We write constraints:
for all t, -y[t] + sum over (j,s) overlapping t of x[j,s] ≤ 1.
Technically this constraint only forces y[t]
to be greater than or equal to the number of excess jobs. But the optimal solution will take it to be equal, because of the objective:
minimize sum over t of y[t].