I want to prove lemma RnP_eq
.
From mathcomp Require Import ssreflect.
Require Import Coq.Program.Equality.
Definition func {n m l o:nat}
(I:t R 0 -> t R m -> t R l)(J:t R n -> t R l -> t R o):=
(fun (x:t R n)(a:t R m) => J (snd (splitat 0 x)) (I (fst (splitat 0 x)) a)).
Lemma deriveP_eq (n m l o:nat)(v:t R (S n))
(I:t R 0 -> t R m -> t R l)(J:t R (S n) -> t R l -> t R o)
(a:t R m)(b:t R o):
forall m:nat, deriveP m (func I J) v a b = deriveP m J v (I Vnil a) b.
Proof.
by [].
Qed.
Lemma RnP_eq (n m l o P:nat)
(I:t R 0 -> t R m -> t R l)(J:t R (S n) -> t R l -> t R o)
(p:t R (S n))(a:t R m)(b:t R o):
updateRnP n (func I J) p a b = updateRnP n J p (I Vnil a) b.
Proof.
dependent induction p => //.
destruct n => //.
rewrite /=.
rewrite (deriveP_eq _ _ _ _ _ _ (J)).
f_equal.
Abort.
deriveP_eq
holds and updateRnP
is just recursion of deriveP
. So I think RnP_eq
must holds. but, I don't know how to prove it.
I need to do induction in n or p, but that changes type of function J
and I can't apply the induction assumption to the goal.
Is it impossible to prove RnP_eq
using Coq ?
Require Import Psatz.
Theorem arith_basic : forall (k P:nat), lt k P -> P = Nat.add k (S (P - (k + 1))).
intros. lia.
Defined.
Definition kLess : forall (k P:nat), (P - k) < (S P).
intros. lia.
Defined.
Definition kLess2 : forall (k P:nat), (P - k) <= (S P).
intros. lia.
Defined.
Definition k1Less : forall (k P:nat), ((S P)-((P-k)+1)) < (S P).
intros. lia.
Defined.
From mathcomp Require Import ssreflect.
Require Import Coq.Reals.Reals.
Require Import Coq.Vectors.Vector.
Require Import CoLoR.Util.Vector.VecUtil.
Require Import Coquelicot.Coquelicot.
Require Import Coq.Classes.RelationClasses.
Import VectorNotations.
Require Import Coq.Logic.FunctionalExtensionality.
Open Scope vector_scope.
Infix ":::" := (Vcons)(at level 60, right associativity).
Fixpoint lastk k n : t R n -> (lt k n) -> t R k :=
match n with
|0%nat => fun _ (H : lt k 0) => False_rect _ (@Lt.lt_n_O k H)
|S n => match k with
|S m => fun v H => shiftin (last v) (lastk m n (shiftout v) (@le_S_n _ _ H))
|0%nat => fun _ H => Vnil
end
end.
Definition EucSum {A}(e:t R A) :R:= Vector.fold_right Rplus e 0.
Definition QE (r1 r2:R):R:= (r1 - r2)^2.
Definition QuadraticError {n : nat} (v1 v2: t R n) :t R n:= Vector.map2 QE v1 v2.
Definition deriveP {P A B}(k:nat)(I:t R (S P) -> t R A -> t R B)(p :t R (S P))(input:t R A)(train:t R B):R:=
let lk := lastk ((S P)-((P-k)+1)) (S P) p (k1Less k P) in
let fk := take (P-k) (kLess2 k P) p in
let pk := nth_order p (kLess k P) in
(nth_order p (kLess k P)) - 0.01*( Derive (fun PK => EucSum (QuadraticError
(I (Vcast (append fk (PK ::: lk)) (symmetry (arith_basic (P-k) (S P) (kLess k P)))) input) train)) pk ).
Fixpoint updateRnP {P A B} (k:nat)(I:t R (S P) -> t R A -> t R B)
(p :t R (S P))(input:t R A)(train:t R B):t R (S k):=
match k in nat return t R (S k) with
|S k' => (deriveP k I p input train) ::: updateRnP k' I p input train
|0%nat => (deriveP k I p input train) ::: Vnil
end.
func v a = J v (I [] a)
. I am having trouble seeing why this lemma should hold. It would help if you could simplify your code a bit. For instance, you could replace the definition ofQuadraticError
with a call tomap2
. I also have the impression that the dependent types are doing more harm than good here... – Arthur Azevedo De AmorimderiveP
to use plain lists instead of vectors. Then you won't have to reason about casts, which will make your statements much simpler. – Arthur Azevedo De Amorimfirstn
andskipn
if I decide to rewritederiveP
to use plain lists. It is a problem thatfirstn
andskipn
don't always return the specified number of elements of the list. – Daisuke Sugawara