TL/DR: A simple echo program that records and plays back audio immediately is showing higher than expected latency.
I am working on a real-time audio broadcasting application. I have decided to use OpenAL to both capture and playback audio samples. I am planning on sending UDP packets with raw PCM data across a LAN network. My ideal latency between recording on one machine and playing back on another machine is 30ms. (A lofty goal).
As a test, I made a small program that records samples from a microphone and immediately plays them back to the host speakers. I did this to test the baseline latency. However, I'm seeing an inherent latency of about 65 - 70 ms from simply recording the audio and playing it back. I have reduced the buffer size that openAL uses to 100 samples at 44100 samples per second. Ideally, this would yield a latency of 2 - 3 ms.
I have yet to try this on another platform (MacOS / Linux) to determine if this is an OpenAL issue or a Windows issue.
Here's the code:
using std::list;
#define FREQ 44100 // Sample rate
#define CAP_SIZE 100 // How much to capture at a time (affects latency)
#define NUM_BUFFERS 10
int main(int argC, char* argV[])
{
list<ALuint> bufferQueue; // A quick and dirty queue of buffer objects
ALuint helloBuffer[NUM_BUFFERS], helloSource;
ALCdevice* audioDevice = alcOpenDevice(NULL); // Request default audio device
ALCcontext* audioContext = alcCreateContext(audioDevice, NULL); // Create the audio context
alcMakeContextCurrent(audioContext);
// Request the default capture device with a ~2ms buffer
ALCdevice* inputDevice = alcCaptureOpenDevice(NULL, FREQ, AL_FORMAT_MONO16, CAP_SIZE);
alGenBuffers(NUM_BUFFERS, &helloBuffer[0]); // Create some buffer-objects
// Queue our buffers onto an STL list
for (int ii = 0; ii < NUM_BUFFERS; ++ii) {
bufferQueue.push_back(helloBuffer[ii]);
}
alGenSources(1, &helloSource); // Create a sound source
short* buffer = new short[CAP_SIZE]; // A buffer to hold captured audio
ALCint samplesIn = 0; // How many samples are captured
ALint availBuffers = 0; // Buffers to be recovered
ALuint myBuff; // The buffer we're using
ALuint buffHolder[NUM_BUFFERS]; // An array to hold catch the unqueued buffers
alcCaptureStart(inputDevice); // Begin capturing
bool done = false;
while (!done) { // Main loop
// Poll for recoverable buffers
alGetSourcei(helloSource, AL_BUFFERS_PROCESSED, &availBuffers);
if (availBuffers > 0) {
alSourceUnqueueBuffers(helloSource, availBuffers, buffHolder);
for (int ii = 0; ii < availBuffers; ++ii) {
// Push the recovered buffers back on the queue
bufferQueue.push_back(buffHolder[ii]);
}
}
// Poll for captured audio
alcGetIntegerv(inputDevice, ALC_CAPTURE_SAMPLES, 1, &samplesIn);
if (samplesIn > CAP_SIZE) {
// Grab the sound
alcCaptureSamples(inputDevice, buffer, samplesIn);
// Stuff the captured data in a buffer-object
if (!bufferQueue.empty()) { // We just drop the data if no buffers are available
myBuff = bufferQueue.front(); bufferQueue.pop_front();
alBufferData(myBuff, AL_FORMAT_MONO16, buffer, samplesIn * sizeof(short), FREQ);
// Queue the buffer
alSourceQueueBuffers(helloSource, 1, &myBuff);
// Restart the source if needed
// (if we take too long and the queue dries up,
// the source stops playing).
ALint sState = 0;
alGetSourcei(helloSource, AL_SOURCE_STATE, &sState);
if (sState != AL_PLAYING) {
alSourcePlay(helloSource);
}
}
}
}
// Stop capture
alcCaptureStop(inputDevice);
alcCaptureCloseDevice(inputDevice);
// Stop the sources
alSourceStopv(1, &helloSource);
alSourcei(helloSource, AL_BUFFER, 0);
// Clean-up
alDeleteSources(1, &helloSource);
alDeleteBuffers(NUM_BUFFERS, &helloBuffer[0]);
alcMakeContextCurrent(NULL);
alcDestroyContext(audioContext);
alcCloseDevice(audioDevice);
return 0;
}
Here is an image of the waveform showing the delay in input sound and the resulting echo. This example is shows a latency of about 70ms.
System specs:
Intel Core i7-9750H 24 GB Ram Windows 10 Home: V 2004 - Build 19041.508 Sound driver: Realtek Audio (Driver version 10.0.19041.1) Input device: Logitech G330 Headset
Issue is reproducible on other Windows Systems.
EDIT:
I tried to use PortAudio to do a similar thing and achieved a similar result. I've determined that this is due to Windows audio drivers. I rebuilt PortAudio with ASIO audio only and installed ASIO4ALL audio driver. This has achieved an acceptable latency of <10ms.