Dot Operator in Haskell
I'm trying to understand what the dot operator is doing in this Haskell code:
sumEuler = sum . (map euler) . mkList
Short answer
Equivalent code without dots, that is just
sumEuler = \x -> sum ((map euler) (mkList x))
or without the lambda
sumEuler x = sum ((map euler) (mkList x))
because the dot (.) indicates function composition.
Longer answer
First, let's simplify the partial application of euler
to map
:
map_euler = map euler
sumEuler = sum . map_euler . mkList
Now we just have the dots. What is indicated by these dots?
From the source:
(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g = \x -> f (g x)
Thus (.)
is the compose operator.
Compose
In math, we might write the composition of functions, f(x) and g(x), that is, f(g(x)), as
(f ∘ g)(x)
which can be read "f composed with g".
So in Haskell, f ∘ g, or f composed with g, can be written:
f . g
Composition is associative, which means that f(g(h(x))), written with the composition operator, can leave out the parentheses without any ambiguity.
That is, since (f ∘ g) ∘ h is equivalent to f ∘ (g ∘ h), we can simply write f ∘ g ∘ h.
Circling back
Circling back to our earlier simplification, this:
sumEuler = sum . map_euler . mkList
just means that sumEuler
is an unapplied composition of those functions:
sumEuler = \x -> sum (map_euler (mkList x))