Whether the P
here is Test<T>
or Test<T,T>
? and why?
P
is Test<T,T>
.
I think we can agree that the rules of [temp.deduct] applies also for class templates; e.g. [temp.class.order], covering partial ordering of class template specializations, is entirely based on the concept of re-writing the class templates to (invented) function templates and applying the rules of function templates to that of the invented function templates corresponding to the original class templates under partial ordering analysis. Combined with the fact that the standard passage for class templates is quite brief in comparison to function templates, I interpret the references below as applying also for class templates.
Now, from [temp.deduct]/1 [emphasis mine]:
When a function template specialization is referenced, all of the template arguments shall have values. The values can be explicitly specified or, in some cases, be deduced from the use or obtained from default template-arguments. [...]
and, from [temp.deduct]/2 [emphasis mine]:
When an explicit template argument list is specified, the template arguments must be compatible with the template parameter list and must result in a valid function type as described below; otherwise type deduction fails. Specifically, the following steps are performed when evaluating an explicitly specified template argument list with respect to a given function template:
- (2.1) The specified template arguments must match the template parameters in kind (i.e., type, non-type, template). There must not be more arguments than there are parameters unless [...]
With extra emphasis on "is referenced" and "the specified template arguments"; there is no requirement that we specify all arguments for a given matching function(/class) template, only that those that do specify follow the requirements of [temp.deduct]/2 for explicitly specified template arguments.
This leads us to back to [temp.deduct]/1 for the remaining template arguments of a given candidate function/class template: these can be either deduced (function templates) or obtained from the default template arguments. Thus, the call:
func(Test<int>{});
is, as per the argument above, semantically equivalent to
func(Test<int, int>{});
with the main difference that the template arguments for the former is decided by both an explicitly specified template arguments and a default template argument, whereas for the latter both are decided by explicitly specified template arguments. From this, it is clear that A
is Test<int, int>
, but we will use a similar argument for P
.
From [temp.deduct.type]/3 [emphasis mine]:
A given type P
can be composed from a number of other types, templates, and non-type values:
- [...]
- (3.3) A type that is a specialization of a class template (e.g.,
A<int>
) includes the types, templates, and non-type values referenced by the template argument list of the specialization.
Notice that the description in [temp.deduct.type]/3.3 now returns to the template argument list of the template type P
. It doesn't matter that P
, for when inspecting this particular candidate function in overload resolution, refers to a class template by partly explicitly specifying the template argument list and partly relying on a default template parameter, where the latter is instantiation-dependent. This step of overload resolution does not imply any kind of instantiation, only inspection of candidates. Thus, the same rules as we just applied to the template argument A
above applies to P
, in this case, and as Test<int, int>
is referenced (via Test<int>
), P
is Test<int, int>
, and we have a perfect match for P
and A
(for the single parameter-argument pair P
and A
of this example)
Compiler error messages?
Based in the argument above, one could arguably expect a similar error message for the OP's failing example:
// (Ex1)
template<typename T, typename U = T>
struct Test{};
template<typename T>
void func(Test<T>) {}
int main() {
func(Test<int, double>{});
}
as for the following simple one:
// (Ex2)
struct Foo {};
template<typename T> struct Test {};
template<typename T> void f(T) {}
int main() {
f<Test<int>>(Test<Foo>{});
}
This is not the case, however, as the former yields the following error messages for GCC and Clang, respectively:
// (Ex1)
// GCC
error: no matching function for call to 'func(Test<int, double>)'
note: template argument deduction/substitution failed:
deduced conflicting types for parameter 'T' ('int' and 'double')
// Clang
error: no matching function for call to 'func'
note: candidate template ignored: deduced
conflicting types for parameter 'T' ('int' vs. 'double')
whereas the latter yields the following error messages for GCC and Clang, respectively:
// (Ex2)
// GCC
error: could not convert 'Test<Foo>{}' from 'Test<Foo>' to 'Test<int>'
// Clang
error: no matching function for call to 'f'
note: candidate function template not viable:
no known conversion from 'Test<Foo>' to 'Test<int>' for 1st argument
We can finally note that if we tweak (Ex1)
into explicitly specifying the single template argument of f
, both GCC and Clang yields similar error messages as for (Ex2)
, hinting that argument deduction has been entirely removed from the equation.
template<typename T, typename U = T>
struct Test{};
template<typename T>
void func(Test<T>) {}
int main() {
func<int>(Test<int, double>{});
}
The key for this difference may be as specified in [temp.deduct]/6 [emphasis mine]:
At certain points in the template argument deduction process it is necessary to take a function type that makes use of template parameters and replace those template parameters with the corresponding template arguments. This is done at the beginning of template argument deduction when any explicitly specified template arguments are substituted into the function type, and again at the end of template argument deduction when any template arguments that were deduced or obtained from default arguments are substituted.
namely that the template argument deduction process is separated into a clear beginning and end, categorizing:
- explicitly specified template arguments as the beginning of the process, and,
- deduced or default argument-obtained template arguments as the end of the process,
which would explain the differences in the error messages of the examples above; if all template arguments have been explicitly specified in the beginning of the deduction process, the remainder of the process will not have any remaining template argument to work with w.r.t. deduction or default template arguments.
P
here when perform a template argument deduction for a function call. – xmh0511