I'm working in Keras (Tensorflow 2). I'd like to multiply each element of a tensor with its own trainable weight. Let's say that my input tensor is 1D, with 10 elements; so I try to define the input as a Keras input tensor, the weights as a tf.Variable, and I try to use the Keras Multiply layer, thus:
import tensorflow as tf
inputs = tf.keras.layers.Input(shape=(10), name='inputs')
weights = tf.Variable(tf.random.normal([10]), name='weights')
outputs = tf.keras.layers.Multiply()([inputs, weights])
Now when I inspect the dimensions they are:
inputs: shape=(None, 10)
weights: shape=(10,)
outputs: shape=(10, 10)
The input dimension has a None dimension, for the batch size, which is what I expect and want. However I expected outputs to have shape=(None, 10). Instead, the initial dimension for the batch size seems to have taken a fixed size of 10. How should I correct this?