I am trying to compare two percentages/proportions for statistical significance in R, using a Chi-Square test. I am familiar with a SAS method for Chi Square in which I supply a dataset column for a numerator, another column for denominator, and a categorical variable to distinguish distributions (A/B).
However I am getting unexpected values in R using some examples sets. When I test two similar populations, with low sample sizes, I am getting p-values of (approximately) zero, where I would expect the p-values to be very high (~ 1).
My test set is below, where I went with sugar content in a batch of water: e.g. "does group A use the same ratio of sugar as group B?". My actual problem is similar, where this isn't a pass-fail type test and the numerator and denominator values can vary wildly between samples (different sugar and/or water weights per sample). My first objective is to verify that I can get a high p-value from two similar sets. The next question is, at what sample size does the p-value become low enough to indicate significance?
# CREATE 2 NEARLY-EQUAL DISTRIBUTIONS (EXPECTING HIGH P-VALUE FROM PROP.TEST)
set.seed(108)
group_A = tibble(group = "A", sugar_lbs = rnorm(mean = 10, sd = 3, n = 50), batch_lbs = rnorm(mean = 30, sd = 6, n = 50))
group_B = tibble(group = "B", sugar_lbs = rnorm(mean = 10, sd = 3, n = 50), batch_lbs = rnorm(mean = 30, sd = 6, n = 50))
batches <- rbind(group_A, group_B)
I then do a summarize to calculate the overall sugar percentage tendency between groups:
# SUMMARY TOTALS
totals <- batches %>%
group_by(group) %>%
summarize(batch_count = n(),
batch_lbs_sum = sum(batch_lbs),
sugar_lbs_sum = sum(sugar_lbs),
sugar_percent_overall = sugar_lbs_sum / batch_lbs_sum) %>%
glimpse()
I then supply the sugar percentage between groups to a prop.test, expecting a high p-value
# ADD P-VALUE & CONFIDENCE INTERVAL
stats <- totals %>%
rowwise() %>%
summarize(p_val = prop.test(x = sugar_percent_overall, n = batch_count, conf.level = 0.95, alternative = "two.sided")$p.value) %>%
mutate(p_val = round(p_val, digits = 3)) %>%
mutate(conf_level = 1 - p_val) %>%
select(p_val, conf_level) %>%
glimpse()
# FINAL SUMMARY TABLE
cbind(totals, stats) %>%
glimpse()
Unforunately the final table gives me a p-value of 0, suggesting the two nearly-identical sets are independent/different. Shouldn't I get a p-value of ~1?
Observations: 2
Variables: 7
$ group <chr> "A", "B"
$ batch_count <int> 50, 50
$ batch_lbs_sum <dbl> 1475.579, 1475.547
$ sugar_lbs_sum <dbl> 495.4983, 484.6928
$ sugar_percent_overall <dbl> 0.3357992, 0.3284833
$ p_val <dbl> 0, 0
$ conf_level <dbl> 1, 1
From another angle, I also tried to compare the recommended sample size from power.prop.test with an actual prop.test using this recommended sample size. This gave me the reverse problem -- I was a expecting low p-value, since I am using the recommended sample size, but instead get a p-value of ~1.
# COMPARE PROP.TEST NEEDED COUNTS WITH AN ACTUAL PROP.TEXT
power.prop.test(p1 = 0.33, p2 = 0.34, sig.level = 0.10, power = 0.80, alternative = "two.sided") ## n = 38154
prop.test(x = c(0.33, 0.34), n = c(38154, 38154), conf.level = 0.90, alternative = "two.sided") ## p = 1 -- shouldn't p be < 0.10?
Am I using prop.test wrong or am I misinterpreting something? Ideally, I would prefer to skip the summarize step and simply supply the dataframe, the numerator column 'sugar_lbs', and the denominator 'batch_lbs' as I do in SAS -- is this possible in R?
(Apologies for any formatting issues as I'm new to posting)
---------------------------------
EDIT - EXAMPLE WITH ONLY PROPORTIONS & SAMPLE SIZE
I think my choice of using normal distributions may have distracted from the original question. I found an example that gets to the heart of what I was trying to ask, which is how to use prop test given only a proportion/percentage and the sample size. Instead of city_percent
and city_total
below, I could simply rename these to sugar_percent
and batch_lbs
. I think this reference answers my question, where prop.test appears to be the correct test to use.
My actual problem has an extremely non-normal distribution, but is not easily replicated via code.
STANFORD EXAMPLE (pages 37-50)
- https://web.stanford.edu/class/psych10/schedule/P10_W7L1
df <- tibble(city = c("Atlanta", "Chicago", "NY", "SF"), washed = c(1175, 1329, 1169, 1521), not_washed = c(413, 180, 334, 215)) %>%
mutate(city_total = washed + not_washed,
city_percent = washed / city_total) %>%
select(-washed, -not_washed) %>%
glimpse()
# STANFORD CALCULATION (p = 7.712265e-35)
pchisq(161.74, df = 3, lower.tail = FALSE)
# PROP TEST VERSION (SAME RESULT, p = 7.712265e-35)
prop.test(x = df$city_percent * df$city_total, n = df$city_total, alternative = "two.sided", conf.level = 0.95)$p.value