I am trying to prove the known fact that there is a standard way to build an algebriac_cpo from a partial_order. My problem is I keep getting the error
Type unification failed: No type arity set :: partial_order
and I can not understand what this means.
I think I have tracked down my problem to the definition of cpo. The definition works and I have proven various results for it but the working interpretation of a partial_order fails with cpo.
theory LocaleProblem imports "HOL-Lattice.Bounds"
begin
definition directed:: "'a::partial_order set ⇒ bool" where
" directed a ≡
¬a={} ∧ ( ∀ a1 a2. a1∈a∧ a2∈a ⟶ (∃ ub . (is_Sup {a1,a2} ub))) "
class cpo = partial_order +
fixes bot :: "'a::partial_order" ("⊥")
assumes bottom: " ∀ x::'a. ⊥ ⊑ x "
assumes dlub: "directed (d::'a::partial_order set) ⟶ (∃ lub . is_Inf d lub) "
print_locale cpo
interpretation "idl" : partial_order
"(⊆)::( ('b set) ⇒ ('b set) ⇒ bool) "
by (unfold_locales , auto) (* works *)
interpretation "idl" : cpo
"(⊆)::( ('b set) ⇒ ('b set) ⇒ bool) "
"{}" (* gives error
Type unification failed: No type arity set :: partial_order
Failed to meet type constraint:
Term: (⊆) :: 'b set ⇒ 'b set ⇒ bool
Type: ??'a ⇒ ??'a ⇒ bool *)
Any help much appreciated. david
You offered two solutions. Following the work of Hennessy in Algebraic Theory of Processes" I am trying to prove (where I(A) are the Ideal which are sets) "If a is_a partial_order then I(A) is an algebraic_cpo" I will then want to apply the result to a number of semantics, give as sets. Dose your comment mean that the second solution is not a good idea?
Initially I had a proven lemma that started
lemma directed_ran: "directed (d::('a::partial_order×'b::partial_order) set) ⟹ directed (Range d)"
proof (unfold directed_def)
With the First solution started well:
context partial_order begin (* type 'a is now a partial_order *)
definition
is_Sup :: "'a set ⇒ 'a ⇒ bool" where
"is_Sup A sup = ((∀x ∈ A. x ⊑ sup) ∧ (∀z. (∀x ∈ A. x ⊑ z) ⟶ sup ⊑ z))"
definition directed:: "'a set ⇒ bool" where
" directed a ≡
¬a={} ∧ ( ∀ a1 a2. a1∈a∧ a2∈a ⟶ (∃ ub . (is_Sup {a1,a2} ub))) "
lemma directed_ran: "directed (d::('c::partial_order×'b::partial_order) set) ⟹ directed (Range d)"
proof - assume a:"directed d"
from a local.directed_def[of "d"] (* Fail with message below *)
show "directed (Range d)"
Alas the working lemma now fails: I rewrote proof (unfold local.directed_def) so I explored and found that although the fact local.directed_def exists is can not be unified
Failed to meet type constraint:
Term: d :: ('c × 'b) set
Type: 'a set
I changed the type successfully in the lemma statement but now can find no way to unfold the definition in the proof. Is there some way to do this?
Second solution again starts well:
instantiation set:: (type) partial_order
begin
definition setpoDef: "a⊑(b:: 'a set) = subset_eq a b"
instance proof
fix x::"'a set" show " x ⊑ x" by (auto simp: setpoDef)
fix x y z::"'a set" show "x ⊑ y ⟹ y ⊑ z ⟹ x ⊑ z" by(auto simp: setpoDef)
fix x y::"'a set" show "x ⊑ y ⟹ y ⊑ x ⟹ x = y" by (auto simp: setpoDef)
qed
end
but next step fails
instance proof
fix d show "directed d ⟶ (∃lub. is_Sup d (lub::'a set))"
proof assume "directed d " with directed_def[of "d"] show "∃lub. is_Sup d lub"
by (metis Sup_least Sup_upper is_SupI setpoDef)
qed
next
from class.cpo_axioms_def[of "bot"] show "∀x . ⊥ ⊑ x " (* Fails *)
qed
end
the first subgoal is proven but show "∀x . ⊥ ⊑ x " although cut an paste from the subgaol in the output does not match the subgoal. Normally at this point is need to add type constraints. But I cannot find any that work. Do you know what is going wrong? Do you know if I can force the Output to reveal the type information in the sugoal.