I have found a saved_model from Tensorflow's Model Zoo. I am able to run my Faster R-CNN model locally using the following code:
image_np = np.array(Image.open('my_input.jpg'))
image = np.asarray(image_np)
input_tensor = tf.convert_to_tensor(image)
input_tensor = input_tensor[tf.newaxis,...]
model = tf.saved_model.load(os.path.join('<PATH_TO_SAVED_MODEL>'))
model = model.signatures['serving_default']
output_dict = model(input_tensor)
I wanted to try running this using Elastic Inference, and started out with this guide. I swapped out the faster r-cnn model being run by just changing the path to the saved_model when starting up tensorflow:
EI_VISIBLE_DEVICES=0 amazonei_tensorflow_model_server --model_name=f_r_cnn --model_base_path=/tmp/f_r_cnn --port=9000
Now I'm trying to run a client to talk to tensorflow serving, using the template provided:
from __future__ import print_function
import grpc
import tensorflow as tf
from PIL import Image
import numpy as np
import time
import os
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc
tf.app.flags.DEFINE_string('server', 'localhost:9000',
'PredictionService host:port')
tf.app.flags.DEFINE_string('image', '', 'path to image in JPEG format')
FLAGS = tf.app.flags.FLAGS
coco_classes_txt = "https://raw.githubusercontent.com/amikelive/coco-labels/master/coco-labels-paper.txt"
local_coco_classes_txt = "/tmp/coco-labels-paper.txt"
# it's a file like object and works just like a file
os.system("curl -o %s -O %s"%(local_coco_classes_txt, coco_classes_txt))
NUM_PREDICTIONS = 5
with open(local_coco_classes_txt) as f:
classes = ["No Class"] + [line.strip() for line in f.readlines()]
def main(_):
channel = grpc.insecure_channel(FLAGS.server)
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
# Send request
with Image.open(FLAGS.image) as f:
f.load()
# See prediction_service.proto for gRPC request/response details.
data = np.asarray(f)
data = np.expand_dims(data, axis=0)
request = predict_pb2.PredictRequest()
request.model_spec.name = 'f_r_cnn'
request.inputs['inputs'].CopyFrom(
tf.contrib.util.make_tensor_proto(data, shape=data.shape))
result = stub.Predict(request, 60.0) # 10 secs timeout
outputs = result.outputs
detection_classes = outputs["detection_classes"]
detection_classes = tf.make_ndarray(detection_classes)
num_detections = int(tf.make_ndarray(outputs["num_detections"])[0])
print("%d detection[s]" % (num_detections))
class_label = [classes[int(x)]
for x in detection_classes[0][:num_detections]]
print("SSD Prediction is ", class_label)
if __name__ == '__main__':
tf.app.run()
While this client ran just fine with the model from the tutorial (no surprise there), it is failing when I try to get it to talk to my Faster R-CNN model with the following error:
debug_error_string = "{"created":"@1579654607.391705065","description":"Error received from peer ipv6:[::1]:9000","file":"src/core/lib/surface/call.cc","file_line":1052,"grpc_message":"Unexpected error in RPC handling","grpc_status":2}"
I googled this error and was unable to find anything useful. What is grpc_status 2? How might I find useful information to help point me in the right direction?