Let's assume my matrix A is the output of comparison function i.e. logical matrix having values 0 and 1's only. For a small matrix of size 3*4, we might have something like:
A =
1 1 0 0
0 0 1 0
0 0 1 1
Now, I am generating another matrix B which is of the same size as A, but its rows are filled with indexes of A and any leftover values in each row are set to zero.
B =
1 2 0 0
3 0 0 0
3 4 0 0
Currently, I am using find function on each row of A to get matrix B. Complete code can be written as:
A=[1,1,0,0;0,0,1,0;0,0,1,1];
[rows,columns]=size(A);
B=zeros(rows,columns);
for i=1:rows
currRow=find(A(i,:));
B(i,1:length(currRow))=currRow;
end
For large martixes, "find" function is taking time in the calculation as per Matlab Profiler. Is there any way to generate matrix B faster?
Note: Matrix A is having more than 1000 columns in each row but non-zero elements are never more than 50. Here, I am taking Matrix B as the same size as A but Matrix B can be of much smaller size column-wise.
find
with an indexing operation, but I’d be surprised if that’s faster.I = 1:columns; currRow = I(A(i,:));
– Cris Luengosparse
matrix? I would also store the transpose of the matrix so as to make the searches along the columns, the way they're stored in MATLAB. – beakerfor
loops in Matlab are not necessarily slow. Historically they were but that's not so true nowadays. With the suggestions from Cris and beaker I wouldn't expect a vectorised version to be faster. – David