If you want to do this from Julia instead of FemtoLisp, you can do
function parse_file(path::AbstractString)
code = read(path, String)
Meta.parse("begin $code end")
end
This takes in a file path, reads it and parses it to a big expression that can be evaluated.
This comes from @NHDaly's answer, here:
https://stackoverflow.com/a/54317201/751061
If you already have your file as a string and don’t want to have to read it again, you can instead do
parse_all(code::AbstractString) = Meta.parse("begin $code end")
It was pointed out on Slack by Nathan Daly and Taine Zhao that this code won't work for modules:
julia> eval(parse_all("module M x = 1 end"))
ERROR: syntax: "module" expression not at top level
Stacktrace:
[1] top-level scope at REPL[50]:1
[2] eval at ./boot.jl:331 [inlined]
[3] eval(::Expr) at ./client.jl:449
[4] |>(::Expr, ::typeof(eval)) at ./operators.jl:823
[5] top-level scope at REPL[50]:1
This can be fixed as follows:
julia> eval_all(ex::Expr) = ex.head == :block ? for e in ex eval_all(e) end : eval(e);
julia> eval_all(ex::Expr) = ex.head == :block ? eval.(ex.args) : eval(e);
julia> eval_all(parse_all("module M x = 1 end"));
julia> M.x
1
Since the question asker is not convinced that the above code produces a tree, here is a graph representation of the output of parse_all
, clearly showing a tree structure.
In case you're curious, those leaves labelled #= none:1 =#
are line number nodes, indicating the line on which each following expression takes place.
As suggested in the comments, one can also apply Meta.show_sexpr
to an Expr
object to get a more "lispy" representation of the AST without all the pretty printing julia does by default:
julia> (Meta.show_sexpr ∘ Meta.parse)("begin x = 1\n y = 2\n z = √(x^2 + y^2)\n end")
(:block,
:(#= none:1 =#),
(:(=), :x, 1),
:(#= none:2 =#),
(:(=), :y, 2),
:(#= none:3 =#),
(:(=), :z, (:call, :√, (:call, :+, (:call, :^, :x, 2), (:call, :^, :y, 2))))
)
:(1 + 1)
is as whole as it gets. Do you mean to recursively expand+
to a sub-AST? (If yes, that doesn't really work). – phipsgabler1 + 1
toCore.add_int(1, 1)
via ASTs, because ASTs exist before type inference, and only after type inference you know which method of+
will actually be called. – phipsgabler"1 + 1"
. – Aleksei Matiushkinparse
on a whole source file, containing more than one single expression? – phipsgabler