What you are observing is the effect of a logged x scale.
library(dplyr)
library(ggplot2)
library(readr)
"x,y
0.09838589987314314, 431.84212280818747
0.19646546437091444, 1072.2954863657576
0.29750771557320366, 1347.2844856323754
0.3955242765781446, 1546.716447763184
0.49672163253953483, 1501.5827721848123
0.5940891079858363, 1320.5680378691911
0.6990737071572558, 1178.7879191946129
0.7962694810692876, 1061.1374091606106
0.8923393306748771, 919.3252883525568
0.9838589987314309, 831.8421228081871
1.1025615087338325, 744.3696246416428
1.1863284538600922, 678.0025335022334
1.286887658830817, 599.5653043536236
1.3959707710478373, 554.3356223748249
1.4898579966508398, 509.09527301820117
1.6030497343115249, 454.80365357690516
1.6696092455367386, 403.50956730448706
1.7674609336378837, 376.37709180612046
1.886333052497789, 346.2310820721382
1.9968863894545188, 322.11747449829977
2.079798216336457, 291.9554636975797
2.31183906016707, 255.79838655910407
2.5078022414885948, 213.5875725048336
2.6764666574617317, 192.49816654443634
2.9033375196831206, 162.36282418827932
3.0238856986296256, 153.3328888592573
3.149439104611845, 144.3029535302353
3.3340199781197377, 132.26481765451013
3.500818628686328, 117.20248016534447
3.6759620972244393, 111.19674644976362
3.7975657368770896, 99.14260950730068
3.923192118001404, 96.14507633842254
4.086085223703413, 96.17174478298557
4.616479953856948, 78.13854256950458
5.089953102964006, 63.10820721381424
5.61198637258845, 57.13447563170894
6.038356194859665, 51.14474298286564
6.712049082852011, 42.15747716514443
6.990737071572554, 33.12754183612242
7.521857271241964, 36.194412960864156
8.093329248357565, 27.185812387492433
8.226106849449925, 27.19647976531769
8.498232760057107, 27.217814520968204
8.85108408255861, 24.22561504100281
9.446371423329051, 24.268284552303612" %>%
read_csv() %>%
ggplot(aes(x, y)) +
geom_point() +
geom_line() +
scale_y_continuous(breaks = seq(0, 1600, 200)) +
labs(x = "Window mm",
y = element_blank()) -> p
p
Produces this:
But if we log the x scale:
p +
scale_x_log10(breaks = c(seq(0.1, 0.3, 0.1), seq(0.4, 0.8, 0.2), 1:10),
labels = c(seq(0.1, 0.3, 0.1), seq(0.4, 0.8, 0.2), 1:10))
We get this:
Now you will have to apply this to your data.