I am new to NLP, how to find the similarity between 2 sentences and also how to print scores of each word. And also how to implement the gensim word2Vec model.
Try this code: here my two sentences :
sentence1="I am going to India"
sentence2=" I am going to Bharat"
from gensim.models import word2vec
import numpy as np
words1 = sentence1.split(' ')
words2 = sentence2.split(' ')
#The meaning of the sentence can be interpreted as the average of its words
sentence1_meaning = word2vec(words1[0])
count = 1
for w in words1[1:]:
sentence1_meaning = np.add(sentence1_meaning, word2vec(w))
count += 1
sentence1_meaning /= count
sentence2_meaning = word2vec(words2[0])
count = 1
for w in words2[1:]:
sentence2_meaning = np.add(sentence2_meaning, word2vec(w))
count += 1
sentence2_meaning /= count
#Similarity is the cosine between the vectors
similarity = np.dot(sentence1_meaning, sentence2_meaning)/(np.linalg.norm(sentence1_meaning)*np.linalg.norm(sentence2_meaning))