Minimal runnable multi-file scope example
Here I illustrate how static
affects the scope of function definitions across multiple files.
a.c
#include <stdio.h>
/* Undefined behavior: already defined in main.
* Binutils 2.24 gives an error and refuses to link.
* https://stackguides.com/questions/27667277/why-does-borland-compile-with-multiple-definitions-of-same-object-in-different-c
*/
/*void f() { puts("a f"); }*/
/* OK: only declared, not defined. Will use the one in main. */
void f(void);
/* OK: only visible to this file. */
static void sf() { puts("a sf"); }
void a() {
f();
sf();
}
main.c
#include <stdio.h>
void a(void);
void f() { puts("main f"); }
static void sf() { puts("main sf"); }
void m() {
f();
sf();
}
int main() {
m();
a();
return 0;
}
GitHub upstream.
Compile and run:
gcc -c a.c -o a.o
gcc -c main.c -o main.o
gcc -o main main.o a.o
./main
Output:
main f
main sf
main f
a sf
Interpretation
- there are two separate functions
sf
, one for each file
- there is a single shared function
f
As usual, the smaller the scope, the better, so always declare functions static
if you can.
In C programming, files are often used to represent "classes", and static
functions represent "private" methods of the class.
A common C pattern is to pass a this
struct around as the first "method" argument, which is basically what C++ does under the hood.
What standards say about it
C99 N1256 draft 6.7.1 "Storage-class specifiers" says that static
is a "storage-class specifier".
6.2.2/3 "Linkages of identifiers" says static
implies internal linkage
:
If the declaration of a file scope identifier for an object or a function contains the storage-class specifier static, the identifier has internal linkage.
and 6.2.2/2 says that internal linkage
behaves like in our example:
In the set of translation units and libraries that constitutes an entire program, each declaration of a particular identifier with external linkage denotes the same object or function. Within one translation unit, each declaration of an identifier with internal linkage denotes the same object or function.
where "translation unit" is a source file after preprocessing.
How GCC implements it for ELF (Linux)?
With the STB_LOCAL
binding.
If we compile:
int f() { return 0; }
static int sf() { return 0; }
and disassemble the symbol table with:
readelf -s main.o
the output contains:
Num: Value Size Type Bind Vis Ndx Name
5: 000000000000000b 11 FUNC LOCAL DEFAULT 1 sf
9: 0000000000000000 11 FUNC GLOBAL DEFAULT 1 f
so the binding is the only significant difference between them. Value
is just their offset into the .bss
section, so we expect it to differ.
STB_LOCAL
is documented on the ELF spec at http://www.sco.com/developers/gabi/2003-12-17/ch4.symtab.html:
STB_LOCAL Local symbols are not visible outside the object file containing their definition. Local symbols of the same name may exist in multiple files without interfering with each other
which makes it a perfect choice to represent static
.
Functions without static are STB_GLOBAL
, and the spec says:
When the link editor combines several relocatable object files, it does not allow multiple definitions of STB_GLOBAL symbols with the same name.
which is coherent with the link errors on multiple non static definitions.
If we crank up the optimization with -O3
, the sf
symbol is removed entirely from the symbol table: it cannot be used from outside anyways. TODO why keep static functions on the symbol table at all when there is no optimization? Can they be used for anything?
See also
C++ anonymous namespaces
In C++, you might want to use anonymous namespaces instead of static, which achieves a similar effect, but further hides type definitions: Unnamed/anonymous namespaces vs. static functions