In addition to @GuyCoder's answer, I would point out that it is worthwhile to consider using one of the maplist predicates from library(apply) when modifying all elements of lists. You can use a predicate to describe the relation between three numbers...
:- use_module(library(apply)). % for maplist/4
num_num_sum(X,Y,S) :-
S is X+Y.
... and subsequently use maplist/4 to apply it to entire lists:
fn(X,Y,Z) :-
maplist(num_num_sum,X,Y,Z).
This predicate yields the desired results if the first two lists are fully instantiated:
?- fn([1,2,3],[4,5,6],X).
X = [5,7,9]
However, due to the use of is/2 you get instantiation errors if the first two lists contain variables:
?- fn([1,A,3],[4,5,6],[5,7,9]).
ERROR at clause 1 of user:num_num_sum/3 !!
INSTANTIATION ERROR- X is _+B: expected bound value
?- fn([1,2,3],[4,5,A],[5,7,9]).
ERROR at clause 1 of user:num_num_sum/3 !!
INSTANTIATION ERROR- X is A+B: expected bound value
If you only want to use the predicate for lists of integers, you can use CLP(FD) to make it more versatile:
:- use_module(library(apply)).
:- use_module(library(clpfd)). % <- use CLP(FD)
int_int_sum(X,Y,S) :-
S #= X+Y. % use CLP(FD) constraint #=/2 instead of is/2
fnCLP(X,Y,Z) :-
maplist(int_int_sum,X,Y,Z).
With this definition the previously problematic queries work as well:
?- fnCLP([1,A,3],[4,5,6],[5,7,9]).
A = 2
?- fnCLP([1,2,3],[4,5,A],[5,7,9]).
A = 6
Even the most general query yields results with this version:
?- fnCLP(X,Y,Z).
X = Y = Z = [] ? ;
X = [_A],
Y = [_B],
Z = [_C],
_A+_B#=_C ? ;
X = [_A,_B],
Y = [_C,_D],
Z = [_E,_F],
_A+_C#=_E,
_B+_D#=_F ? ;
.
.
.
Since the numbers in the above answers are not uniquely determined, you get residual goals instead of actual numbers. In order to get actual numbers in the answers, you have to restrict the range of two of the lists and label them subsequently (see documentation for details), e.g. to generate lists containing the numbers 3,4,5 in the first list and 6,7,8 in the second list, you can query:
label the lists
restrict the domain | |
v v v v
?- fnCLP(X,Y,Z), X ins 3..5, Y ins 6..8, label(X), label(Y).
X = Y = Z = [] ? ;
X = [3],
Y = [6],
Z = [9] ? ;
X = [3],
Y = [7],
Z = [10] ? ;
.
.
.
X = [3,4],
Y = [6,7],
Z = [9,11] ? ;
X = [3,4],
Y = [6,8],
Z = [9,12] ? ;
.
.
.
On an additional note: there are also clp libraries for booleans (CLP(B)), rationals and reals (CLP(Q,R)) that you might find interesting.
_
). You wantfn([X|Xs], [Y|Ys], [Z|Zs]) :- ...
and the condition thatZ is X + Y
. You also only need one recursive call tofn(Xs, Ys, Zs)
. – lurkerN1 is T1+T2
.... Here,T1
andT2
are lists. You can't arithmetically add lists.+
only operates on numbers. – lurker