I think that you must prepare the image before you perform the HoughLinesP()
for example get rid of the text, play with parameters or maybe dilate the edges etc. But if you would like to extract the template without text you can make your life easier by just drawing out all the text from this table (by searching small contours and making a white overlaying bounding box over the contours). In the example code I have made three steps: one by making template without Hough, second with HoughLines()
and third with HoughLinesP()
. Hope it helps a bit. Cheers!
Example:
import cv2
import numpy as np
### MAKING TEMPLATE WITHOUT HOUGH
# Read the image and make a copy then transform it to gray colorspace,
# threshold the image and search for contours.
img = cv2.imread('tablelines.png')
res = img.copy()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
_, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
# Iterate through contours and draw a slightly bigger white rectangle
# over the contours that are not big enough (the text) on the copy of the image.
for i in contours:
cnt = cv2.contourArea(i)
if cnt < 500:
x,y,w,h = cv2.boundingRect(i)
cv2.rectangle(res,(x-1,y-1),(x+w+1,y+h+1),(255,255,255),-1)
# Display the result. Note that the image is allready the template!
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()
# Optional count the rows and columns of the table
count = res.copy()
gray = cv2.cvtColor(count, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
check = []
for i in contours:
cnt = cv2.contourArea(i)
if 10000 > cnt > 10:
cv2.drawContours(count, [i], 0, (255,255,0), 2)
M = cv2.moments(i)
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
check.append([cx, cy])
check.sort(key = lambda xy: xy[1])
columns = 1
for i in range(0, len(check)-1):
if check[i+1][1] + 5 >= check[i][1] >= check[i+1][1] - 5:
columns += 1
else:
break
print(columns)
check.sort(key = lambda tup: tup[0])
rows = 1
for i in range(0, len(check)-1):
if check[i+1][0] + 5 >= check[i][0] >= check[i+1][0] - 5:
rows += 1
else:
break
print('Columns: ',columns)
print('Roiws : ',rows)
cv2.imshow('res', count)
cv2.waitKey(0)
cv2.destroyAllWindows()
### LINES WITH HOUGHLINES()
# Convert the resulting image from previous step (no text) to gray colorspace.
res2 = img.copy()
gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
# You can either use threshold or Canny edge for HoughLines().
_, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
#edges = cv2.Canny(gray, 50, 150, apertureSize=3)
# Perform HoughLines tranform.
lines = cv2.HoughLines(thresh,1,np.pi/180,200)
for line in lines:
for rho,theta in line:
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
cv2.line(res2,(x1,y1),(x2,y2),(0,0,255),2)
#Display the result.
cv2.imshow('res', res)
cv2.imshow('res2', res2)
cv2.waitKey(0)
cv2.destroyAllWindows()
### LINES WITH HOUGHLINESP()
# Convert the resulting image from first step (no text) to gray colorspace.
res3 = img.copy()
gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
# Use Canny edge detection and dilate the edges for better result.
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
kernel = np.ones((4,4),np.uint8)
dilation = cv2.dilate(edges,kernel,iterations = 1)
# Perform HoughLinesP tranform.
minLineLength = 100
maxLineGap = 10
lines = cv2.HoughLinesP(dilation, 1, np.pi / 180, 50, minLineLength, maxLineGap)
for line in lines:
for x1, y1, x2, y2 in line:
cv2.line(res3, (x1, y1), (x2, y2), (0, 255, 0), 2)
#Display the result.
cv2.imwrite('h_res1.png', res)
cv2.imwrite('h_res2.png', res2)
cv2.imwrite('h_res3.png', res3)
cv2.imshow('res', res)
cv2.imshow('res2', res2)
cv2.imshow('res3', res3)
cv2.waitKey(0)
cv2.destroyAllWindows()
Result:
Columns: 7
Rows: 21