T(n) ={ 2T(n/2) + n^2 when n is even and T(n) = 2T(n/2) + n^3 when n is odd
I solved this separately and i am getting the solution as theta(n^2) if n is even and theta(n^3) if n is odd from case 3 of master's theorem. But i am not supposed to solve this problem separately.
How to solve a recurrence relation like this together?
T(n) ={ 2T(n/2) + n^2 when n is even and T(n) = 2T(n/2) + n^3 when n is odd
Is it solvable by master's theorem or master's theorem does not apply?
Kindly help me with this.
n. - meowgoesthedog