I'm trying to use SysTick_Handler
in SW4STM32 for Linux, but whenever the SysTick interrupt is triggered, execution jumps to somewhere in system memory. By my understanding, it should jump into the void SysTick_Handler(void)
that I declared, or failing that, into Default_Handler
declared in startup_stm32.s where the interrupt vector table is defined. I set a break point in my SysTick_Handler
, but it is never reached. In the code below, it gets through init_systick()
and stays in the endless for
loop if I don't include SysTick_CTRL_TICKINT_Msk
, as expected, but when I do include it, the debugger tells me it ends up somewhere around address 0x1fffda7c.
main.c:
#include "stm32f0xx.h"
volatile uint32_t ticks = 0;
void SysTick_Handler(void) {
ticks++;
}
void init_systick(void) {
SysTick->LOAD = 43999;
SCB->SHP[1] |= 0x40000000L;
SysTick->VAL = 0;
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk;
}
int main(void)
{
init_systick();
for(;;);
}
I verified from the .map
file that the linker is using the declared SysTick_Handler
instead of Default_Handler
.
I also tried the following variation to use the standard peripheral library for setup, along with other interrupt priority values, with the same results:
#include "stm32f0xx.h"
volatile uint32_t ticks = 0;
void SysTick_Handler(void) {
ticks++;
}
void init_systick(void) {
SysTick_Config(44000);
NVIC_EnableIRQ(SysTick_IRQn);
NVIC_SetPriority(SysTick_IRQn, 0);
}
int main(void)
{
init_systick();
for(;;);
}
This shouldn't be relevant, but since the target doesn't have a timing crystal, I also modified void SetSysClock(void)
in system_stm32f0xx.c to use the HSI clock and PLL, which appears to be working correctly:
static void SetSysClock(void)
{
RCC->CFGR = (RCC->CFGR & ~RCC_CFGR_SW) | RCC_CFGR_SW_HSI;
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI) ;
FLASH->ACR = FLASH_ACR_PRFTBE | FLASH_ACR_LATENCY;
RCC->CR &= ~RCC_CR_PLLON;
while (RCC->CR & RCC_CR_PLLRDY) ;
RCC->CFGR = (RCC->CFGR & ~RCC_CFGR_PLLMUL & ~RCC_CFGR_PLLSRC) | RCC_CFGR_PLLMUL11; // PLL takes 8 MHz HSI / 2 as input
RCC->CR |= RCC_CR_PLLON;
while (!(RCC->CR & RCC_CR_PLLRDY)) ;
RCC->CFGR = (RCC->CFGR & ~RCC_CFGR_SW) | RCC_CFGR_SW_PLL;
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL) ;
}
-- EDIT: More info requested in the comments --
It's an M0 core, so it doesn't have vector table relocation. From the reference manual section 2.5 (page 44):
Unlike Cortex ® M3 and M4, the M0 CPU does not support the vector table relocation.
Address 0x00000000 should be mapped either to FLASH memory at 0x08000000, system memory at 0x1fffd800, or to SRAM at 0x20000000. The memory at address 0x00000000 matches system memory at 0x1fffd800, even though SYSCFG_CFGR1 MEM_MODE is set to 00, which should map FLASH memory there. Main FLASH memory at address 0x08000000 contains the correct vector table, but address 0x00000000 is populated with address 0x1fffd99d for the SysTick vector (and all other non-NULL vectors except the reset vector, which is 0x1fffdc41); the vectors shown by the debugger at address 0x00000000 are consistent with the observed behavior. All of this information was collected while paused at a breakpoint at address 0x08000298 (a correct position in FLASH memory where the correct code has been loaded), before executing the interrupt.