I am in the process of implementing multithreading through a NVIDIA GeForce GT 650M GPU for a simulation I have created. In order to make sure everything works properly, I have created some side code to test that everything works. At one point I need to update a vector of variables (they can all be updated separately).
Here is the gist of it:
`\__device__
int doComplexMath(float x, float y)
{
return x+y;
}`
`// Kernel function to add the elements of two arrays
__global__
void add(int n, float *x, float *y, vector<complex<long double> > *z)
{
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride)
z[i] = doComplexMath(*x, *y);
}`
`int main(void)
{
int iGAMAf = 1<<10;
float *x, *y;
vector<complex<long double> > VEL(iGAMAf,zero);
// Allocate Unified Memory – accessible from CPU or GPU
cudaMallocManaged(&x, sizeof(float));
cudaMallocManaged(&y, sizeof(float));
cudaMallocManaged(&VEL, iGAMAf*sizeof(vector<complex<long double> >));
// initialize x and y on the host
*x = 1.0f;
*y = 2.0f;
// Run kernel on 1M elements on the GPU
int blockSize = 256;
int numBlocks = (iGAMAf + blockSize - 1) / blockSize;
add<<<numBlocks, blockSize>>>(iGAMAf, x, y, *VEL);
// Wait for GPU to finish before accessing on host
cudaDeviceSynchronize();
return 0;
}`
I am trying to allocate unified memory (memory accessible from the GPU and CPU). When compiling using nvcc, I get the following error:
error: no instance of overloaded function "cudaMallocManaged" matches the argument list argument types are: (std::__1::vector, std::__1::allocator>> *, unsigned long)
How can I overload the function properly in CUDA to use this type with multithreading?
std::vector
. Instead, a straightforward approach would be to use a C-style array to store your data. As a side note, you won't be able to usestd::vector
in kernel code either. – Robert Crovella