I'm encountering a type mismatch when distributing an operation using Spark and Docker. The tutorial I followed seems to be pretty clear. Here is my attempt for the Scala code:
package test
import com.datastax.spark.connector.cql.CassandraConnector
import org.apache.spark.{SparkConf, SparkContext}
import readhub.sharedkernel.config.Settings
object Application extends App {
import com.datastax.spark.connector._
val conf = new SparkConf(true)
.setAppName("Coordinator")
.setMaster("spark://localhost:7077")
.set("spark.cassandra.connection.host", "valid host")
val sc = new SparkContext(conf)
CassandraConnector(conf).withSessionDo { session =>
session.execute("CREATE KEYSPACE test2 WITH REPLICATION = {'class': 'SimpleStrategy', 'replication_factor': 1 }")
session.execute("CREATE TABLE test2.words (word text PRIMARY KEY, count int)")
session.execute("INSERT INTO test2.words(word, count) VALUES('hey', 32)")
sc.cassandraTable("test2", "words")
.map(r => r.getString("word"))
.foreach(process)
}
def process(word: String): Unit = {
// Dummy processing
println(word)
}
}
The build.sbt looks like that:
import sbt.project
val sparkSql = "org.apache.spark" %% "spark-sql" % "2.3.0" % "provided"
val sparkCassandraConnector = "com.datastax.spark" %% "spark-cassandra-connector" % "2.3.0" % "provided"
lazy val commonSettings = Seq(
version := "0.1",
scalaVersion := "2.11.12",
organization := "ch.heig-vd"
)
lazy val root = (project in file("."))
.settings(
commonSettings,
name := "Root"
)
.aggregate(
coordinator
)
lazy val coordinator = project
.settings(
commonSettings,
name := "Coordinator",
libraryDependencies ++= Seq(
sparkSql,
sparkCassandraConnector
)
)
The Dockerfile has been taken from this image and lightly modified to use the version 2.3.0 of Spark:
FROM phusion/baseimage:0.9.22
ENV SPARK_VERSION 2.3.0
ENV SPARK_INSTALL /usr/local
ENV SPARK_HOME $SPARK_INSTALL/spark
ENV SPARK_ROLE master
ENV HADOOP_VERSION 2.7
ENV SPARK_MASTER_PORT 7077
ENV PYSPARK_PYTHON python3
ENV DOCKERIZE_VERSION v0.2.0
RUN apt-get update && \
apt-get install -y openjdk-8-jdk autossh python3-pip && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
##### INSTALL DOCKERIZE
RUN curl -L -O https://github.com/jwilder/dockerize/releases/download/$DOCKERIZE_VERSION/dockerize-linux-amd64-$DOCKERIZE_VERSION.tar.gz && \
tar -C /usr/local/bin -xzvf dockerize-linux-amd64-$DOCKERIZE_VERSION.tar.gz && \
rm -rf dockerize-linux-amd64-$DOCKERIZE_VERSION.tar.gz
##### INSTALL APACHE SPARK WITH HDFS
RUN curl -s http://mirror.synyx.de/apache/spark/spark-$SPARK_VERSION/spark-$SPARK_VERSION-bin-hadoop$HADOOP_VERSION.tgz | tar -xz -C $SPARK_INSTALL && \
cd $SPARK_INSTALL && ln -s spark-$SPARK_VERSION-bin-hadoop$HADOOP_VERSION spark
WORKDIR $SPARK_HOME
##### ADD Scripts
RUN mkdir /etc/service/spark
ADD runit/spark.sh /etc/service/spark/run
RUN chmod +x /etc/service/**/*
EXPOSE 4040 6066 7077 7078 8080 8081 8888
VOLUME ["$SPARK_HOME/logs"]
CMD ["/sbin/my_init"]
The docker-compose.yml is also pretty simple:
version: "3"
services:
master:
build: birgerk-apache-spark
ports:
- "7077:7077"
- "8080:8080"
slave:
build: birgerk-apache-spark
environment:
- SPARK_ROLE=slave
- SPARK_MASTER=master
depends_on:
- master
I cloned the git repo into the folder birgerk-apache-spark
and only changed the version of Spark to be 2.3.0.
Finally, I glue everything using:
sbt coordinator/assembly
to create the fat jar and
spark-submit --class test.Application --packages com.datastax.spark:spark-cassandra-connector_2.11:2.3.0 --master spark://localhost:7077 ReadHub\ Coordinator-assembly-0.1.jar
to submit the jar into the cluster. The error arises when I issue the spark-submit
:
ERROR TransportRequestHandler:199 - Error while invoking RpcHandler#receive() on RPC id 7068633004064450609 java.io.InvalidClassException: org.apache.spark.storage.BlockManagerId; local class incompatible: stream classdesc serialVersionUID = 6155820641931972169, local class serialVersionUID = -3720498261147521051 at java.io.ObjectStreamClass.initNonProxy(ObjectStreamClass.java:687) at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1876) at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1745) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2033) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1567) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2278) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2202) [..]
From my perspective, the Dockerfile properly downloads the corresponding version of Spark, the one that can be found as a dependency in my build.sbt.
I'm sure I'm missing something fundamental. Could anyone point me into the right direction ?
Many thanks!
docker-compose
, but the docs are showing a leading./
when passing a directory to thebuild:
directive. Trybuild: ./birgerk-apache-spark
in your compose file. – Travis Hegnerbuild
directive and has issued adocker-compose build
, but no change. Docker correctly targeted the build folder. I also have the feeling something mismatches, but I cannot find it. :( – Jämes