If you want to filter records for a particular year (e.g. 2000) then optimize the WHERE
clause like this:
SELECT MONTH(date_column), COUNT(*)
FROM date_table
WHERE date_column >= '2000-01-01' AND date_column < '2001-01-01'
GROUP BY MONTH(date_column)
-- average 0.016 sec.
Instead of:
WHERE YEAR(date_column) = 2000
-- average 0.132 sec.
The results were generated against a table containing 300k rows and index on date column.
As for the GROUP BY
clause, I tested the three variants against the above mentioned table; here are the results:
SELECT YEAR(date_column), MONTH(date_column), COUNT(*)
FROM date_table
GROUP BY YEAR(date_column), MONTH(date_column)
-- codelogic
-- average 0.250 sec.
SELECT YEAR(date_column), MONTH(date_column), COUNT(*)
FROM date_table
GROUP BY DATE_FORMAT(date_column, '%Y%m')
-- Andriy M
-- average 0.468 sec.
SELECT YEAR(date_column), MONTH(date_column), COUNT(*)
FROM date_table
GROUP BY EXTRACT(YEAR_MONTH FROM date_column)
-- fu-chi
-- average 0.203 sec.
The last one is the winner.
GROUP BY record_date.MONTH
in your first code snippet? – chiccodoro