The simple answer is you should write code for rvalue references like you would regular references code, and you should treat them the same mentally 99% of the time. This includes all the old rules about returning references (i.e. never return a reference to a local variable).
Unless you are writing a template container class that needs to take advantage of std::forward and be able to write a generic function that takes either lvalue or rvalue references, this is more or less true.
One of the big advantages to the move constructor and move assignment is that if you define them, the compiler can use them in cases were the RVO (return value optimization) and NRVO (named return value optimization) fail to be invoked. This is pretty huge for returning expensive objects like containers & strings by value efficiently from methods.
Now where things get interesting with rvalue references, is that you can also use them as arguments to normal functions. This allows you to write containers that have overloads for both const reference (const foo& other) and rvalue reference (foo&& other). Even if the argument is too unwieldy to pass with a mere constructor call it can still be done:
std::vector vec;
for(int x=0; x<10; ++x)
{
// automatically uses rvalue reference constructor if available
// because MyCheapType is an unamed temporary variable
vec.push_back(MyCheapType(0.f));
}
std::vector vec;
for(int x=0; x<10; ++x)
{
MyExpensiveType temp(1.0, 3.0);
temp.initSomeOtherFields(malloc(5000));
// old way, passed via const reference, expensive copy
vec.push_back(temp);
// new way, passed via rvalue reference, cheap move
// just don't use temp again, not difficult in a loop like this though . . .
vec.push_back(std::move(temp));
}
The STL containers have been updated to have move overloads for nearly anything (hash key and values, vector insertion, etc), and is where you will see them the most.
You can also use them to normal functions, and if you only provide an rvalue reference argument you can force the caller to create the object and let the function do the move. This is more of an example than a really good use, but in my rendering library, I have assigned a string to all the loaded resources, so that it is easier to see what each object represents in the debugger. The interface is something like this:
TextureHandle CreateTexture(int width, int height, ETextureFormat fmt, string&& friendlyName)
{
std::unique_ptr<TextureObject> tex = D3DCreateTexture(width, height, fmt);
tex->friendlyName = std::move(friendlyName);
return tex;
}
It is a form of a 'leaky abstraction' but allows me to take advantage of the fact I had to create the string already most of the time, and avoid making yet another copying of it. This isn't exactly high-performance code but is a good example of the possibilities as people get the hang of this feature. This code actually requires that the variable either be a temporary to the call, or std::move invoked:
// move from temporary
TextureHandle htex = CreateTexture(128, 128, A8R8G8B8, string("Checkerboard"));
or
// explicit move (not going to use the variable 'str' after the create call)
string str("Checkerboard");
TextureHandle htex = CreateTexture(128, 128, A8R8G8B8, std::move(str));
or
// explicitly make a copy and pass the temporary of the copy down
// since we need to use str again for some reason
string str("Checkerboard");
TextureHandle htex = CreateTexture(128, 128, A8R8G8B8, string(str));
but this won't compile!
string str("Checkerboard");
TextureHandle htex = CreateTexture(128, 128, A8R8G8B8, str);
std::move()
created a persistent "copy." – 3Davestd::move(expression)
doesn't create anything, it simply casts the expression to an xvalue. No objects are copied or moved in the process of evaluatingstd::move(expression)
. – fredoverflow