I have two data frames df1 and df2, where df2 is a subset of df1. How do I get a new data frame (df3) which is the difference between the two data frames?
In other word, a data frame that has all the rows/columns in df1 that are not in df2?
I have two data frames df1 and df2, where df2 is a subset of df1. How do I get a new data frame (df3) which is the difference between the two data frames?
In other word, a data frame that has all the rows/columns in df1 that are not in df2?
By using drop_duplicates
pd.concat([df1,df2]).drop_duplicates(keep=False)
Update :
Above method only working for those dataframes they do not have duplicate itself, For example
df1=pd.DataFrame({'A':[1,2,3,3],'B':[2,3,4,4]})
df2=pd.DataFrame({'A':[1],'B':[2]})
It will output like below , which is wrong
Wrong Output :
pd.concat([df1, df2]).drop_duplicates(keep=False)
Out[655]:
A B
1 2 3
Correct Output
Out[656]:
A B
1 2 3
2 3 4
3 3 4
How to achieve that?
Method 1: Using isin
with tuple
df1[~df1.apply(tuple,1).isin(df2.apply(tuple,1))]
Out[657]:
A B
1 2 3
2 3 4
3 3 4
Method 2: merge
with indicator
df1.merge(df2,indicator = True, how='left').loc[lambda x : x['_merge']!='both']
Out[421]:
A B _merge
1 2 3 left_only
2 3 4 left_only
3 3 4 left_only
For rows, try this, where Name
is the joint index column (can be a list for multiple common columns, or specify left_on
and right_on
):
m = df1.merge(df2, on='Name', how='outer', suffixes=['', '_'], indicator=True)
The indicator=True
setting is useful as it adds a column called _merge
, with all changes between df1
and df2
, categorized into 3 possible kinds: "left_only", "right_only" or "both".
For columns, try this:
set(df1.columns).symmetric_difference(df2.columns)
Accepted answer Method 1 will not work for data frames with NaNs inside, as pd.np.nan != pd.np.nan
. I am not sure if this is the best way, but it can be avoided by
df1[~df1.astype(str).apply(tuple, 1).isin(df2.astype(str).apply(tuple, 1))]
It's slower, because it needs to cast data to string, but thanks to this casting pd.np.nan == pd.np.nan
.
Let's go trough the code. First we cast values to string, and apply tuple
function to each row.
df1.astype(str).apply(tuple, 1)
df2.astype(str).apply(tuple, 1)
Thanks to that, we get pd.Series
object with list of tuples. Each tuple contains whole row from df1
/df2
.
Then we apply isin
method on df1
to check if each tuple "is in" df2
.
The result is pd.Series
with bool values. True if tuple from df1
is in df2
. In the end, we negate results with ~
sign, and applying filter on df1
. Long story short, we get only those rows from df1
that are not in df2
.
To make it more readable, we may write it as:
df1_str_tuples = df1.astype(str).apply(tuple, 1)
df2_str_tuples = df2.astype(str).apply(tuple, 1)
df1_values_in_df2_filter = df1_str_tuples.isin(df2_str_tuples)
df1_values_not_in_df2 = df1[~df1_values_in_df2_filter]
edit2, I figured out a new solution without the need of setting index
newdf=pd.concat([df1,df2]).drop_duplicates(keep=False)
Okay i found the answer of highest vote already contain what I have figured out. Yes, we can only use this code on condition that there are no duplicates in each two dfs.
I have a tricky method. First we set ’Name’ as the index of two dataframe given by the question. Since we have same ’Name’ in two dfs, we can just drop the ’smaller’ df’s index from the ‘bigger’ df. Here is the code.
df1.set_index('Name',inplace=True)
df2.set_index('Name',inplace=True)
newdf=df1.drop(df2.index)
import pandas as pd
# given
df1 = pd.DataFrame({'Name':['John','Mike','Smith','Wale','Marry','Tom','Menda','Bolt','Yuswa',],
'Age':[23,45,12,34,27,44,28,39,40]})
df2 = pd.DataFrame({'Name':['John','Smith','Wale','Tom','Menda','Yuswa',],
'Age':[23,12,34,44,28,40]})
# find elements in df1 that are not in df2
df_1notin2 = df1[~(df1['Name'].isin(df2['Name']) & df1['Age'].isin(df2['Age']))].reset_index(drop=True)
# output:
print('df1\n', df1)
print('df2\n', df2)
print('df_1notin2\n', df_1notin2)
# df1
# Age Name
# 0 23 John
# 1 45 Mike
# 2 12 Smith
# 3 34 Wale
# 4 27 Marry
# 5 44 Tom
# 6 28 Menda
# 7 39 Bolt
# 8 40 Yuswa
# df2
# Age Name
# 0 23 John
# 1 12 Smith
# 2 34 Wale
# 3 44 Tom
# 4 28 Menda
# 5 40 Yuswa
# df_1notin2
# Age Name
# 0 45 Mike
# 1 27 Marry
# 2 39 Bolt
In addition to accepted answer, I would like to propose one more wider solution that can find a 2D set difference of two dataframes with any index
/columns
(they might not coincide for both datarames). Also method allows to setup tolerance for float
elements for dataframe comparison (it uses np.isclose
)
import numpy as np
import pandas as pd
def get_dataframe_setdiff2d(df_new: pd.DataFrame,
df_old: pd.DataFrame,
rtol=1e-03, atol=1e-05) -> pd.DataFrame:
"""Returns set difference of two pandas DataFrames"""
union_index = np.union1d(df_new.index, df_old.index)
union_columns = np.union1d(df_new.columns, df_old.columns)
new = df_new.reindex(index=union_index, columns=union_columns)
old = df_old.reindex(index=union_index, columns=union_columns)
mask_diff = ~np.isclose(new, old, rtol, atol)
df_bool = pd.DataFrame(mask_diff, union_index, union_columns)
df_diff = pd.concat([new[df_bool].stack(),
old[df_bool].stack()], axis=1)
df_diff.columns = ["New", "Old"]
return df_diff
Example:
In [1]
df1 = pd.DataFrame({'A':[2,1,2],'C':[2,1,2]})
df2 = pd.DataFrame({'A':[1,1],'B':[1,1]})
print("df1:\n", df1, "\n")
print("df2:\n", df2, "\n")
diff = get_dataframe_setdiff2d(df1, df2)
print("diff:\n", diff, "\n")
Out [1]
df1:
A C
0 2 2
1 1 1
2 2 2
df2:
A B
0 1 1
1 1 1
diff:
New Old
0 A 2.0 1.0
B NaN 1.0
C 2.0 NaN
1 B NaN 1.0
C 1.0 NaN
2 A 2.0 NaN
C 2.0 NaN
As mentioned here that
df1[~df1.apply(tuple,1).isin(df2.apply(tuple,1))]
is correct solution but it will produce wrong output if
df1=pd.DataFrame({'A':[1],'B':[2]})
df2=pd.DataFrame({'A':[1,2,3,3],'B':[2,3,4,4]})
In that case above solution will give
Empty DataFrame, instead you should use concat
method after removing duplicates from each datframe.
Use concate with drop_duplicates
df1=df1.drop_duplicates(keep="first")
df2=df2.drop_duplicates(keep="first")
pd.concat([df1,df2]).drop_duplicates(keep=False)
Finding difference by index. Assuming df1 is a subset of df2 and the indexes are carried forward when subsetting
df1.loc[set(df1.index).symmetric_difference(set(df2.index))].dropna()
# Example
df1 = pd.DataFrame({"gender":np.random.choice(['m','f'],size=5), "subject":np.random.choice(["bio","phy","chem"],size=5)}, index = [1,2,3,4,5])
df2 = df1.loc[[1,3,5]]
df1
gender subject
1 f bio
2 m chem
3 f phy
4 m bio
5 f bio
df2
gender subject
1 f bio
3 f phy
5 f bio
df3 = df1.loc[set(df1.index).symmetric_difference(set(df2.index))].dropna()
df3
gender subject
2 m chem
4 m bio
I had issues with handling duplicates when there were duplicates on one side and at least one on the other side, so I used Counter.collections
to do a better diff, ensuring both sides have the same count. This doesn't return duplicates, but it won't return any if both sides have the same count.
from collections import Counter
def diff(df1, df2, on=None):
"""
:param on: same as pandas.df.merge(on) (a list of columns)
"""
on = on if on else df1.columns
df1on = df1[on]
df2on = df2[on]
c1 = Counter(df1on.apply(tuple, 'columns'))
c2 = Counter(df2on.apply(tuple, 'columns'))
c1c2 = c1-c2
c2c1 = c2-c1
df1ondf2on = pd.DataFrame(list(c1c2.elements()), columns=on)
df2ondf1on = pd.DataFrame(list(c2c1.elements()), columns=on)
df1df2 = df1.merge(df1ondf2on).drop_duplicates(subset=on)
df2df1 = df2.merge(df2ondf1on).drop_duplicates(subset=on)
return pd.concat([df1df2, df2df1])
> df1 = pd.DataFrame({'a': [1, 1, 3, 4, 4]})
> df2 = pd.DataFrame({'a': [1, 2, 3, 4, 4]})
> diff(df1, df2)
a
0 1
0 2