I am a beginner in Machine Learning. I am doing a binary classification based on 49 features. The first 7 features are of float64 type. Next 18 features are of multiclass type and the rest are of binary class type i.e. 0 or 1. I performed feature-selection using the following code
model = ExtraTreesClassifier()
model.fit(x_new, y)
print(model.feature_importances_)
The output of the above was
[ 1.20621145e-01 3.71627370e-02 1.82239903e-05 5.40071522e-03
1.77431957e-02 8.40569119e-02 1.74562937e-01 5.00468692e-02
7.60565780e-03 1.78975490e-01 4.30178009e-03 7.44005584e-03
3.46208406e-02 1.67869557e-03 2.94863800e-02 1.97333741e-02
2.53116233e-02 1.30663822e-02 1.14032351e-02 3.98503442e-02
3.48701630e-02 1.93366039e-02 5.89310510e-03 3.17052801e-02
1.47389909e-02 1.54041443e-02 4.94699885e-03 2.27428191e-03
1.27218776e-03 7.39305898e-04 3.84357333e-03 1.59161363e-04
1.31479740e-03 0.00000000e+00 5.24038196e-05 9.92543746e-05
2.27356615e-04 0.00000000e+00 1.29338508e-05 4.98412036e-06
2.97697346e-06 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 1.49018368e-05 0.00000000e+00 0.00000000e+00
0.00000000e+00]
As none of them were significant I tried it on a subset of 18 features of multiclass type and the following was the output
[ 0.06456545 0.01254671 0.32220959 0.00552464 0.02017919 0.07311639
0.00716867 0.06964389 0.04797752 0.06608452 0.02915153 0.02044009
0.05146265 0.05712569 0.09264365 0.01252251 0.01899865 0.02863864]
Including all features degrades contribution of every feature in the classification but cannot eliminate any one. Should I eliminate the features with relatively lower score?What is the inference of the results above?
Using Scikit-Learn with Python 3.