I'd like to classify a set of 3d images (MRI). There are 4 classes (i.e. grade of disease A, B, C, D) where the distinction between the 4 grades is not trivial, therefore the labels I have for the training data is not one class per image. It's a set of 4 probabilities, one per class, e.g.
0.7 0.1 0.05 0.15
0.35 0.2 0.45 0.0
...
... would basically mean that
- The first image belongs to class A with a probability of 70%, class B with 10%, C with 5% and D with 15%
- etc., I'm sure you get the idea.
I don't understand how to fit a model with these labels, because scikit-learn classifiers expect only 1 label per training data. Using just the class with the highest probability results in miserable results.
Can I train my model with scikit-learn multilabel classification (and how)?
Please note:
- Feature extraction is not the problem.
- Prediction is not the problem.