I want to slice a tensor in "None" dimension.
For example,
tensor = tf.placeholder(tf.float32, shape=[None, None, 10], name="seq_holder")
sliced_tensor = tensor[:,1:,:] # it works well!
but
# Assume that tensor's shape will be [3,10, 10]
tensor = tf.placeholder(tf.float32, shape=[None, None, 10], name="seq_holder")
sliced_seq = tf.slice(tensor, [0,1,0],[3, 9, 10]) # it doens't work!
It is same that i get a message when i used another place_holder to feed size parameter for tf.slice().
The second methods gave me "Input size (depth of inputs) must be accessible via shape inference" error message.
I'd like to know what's different between two methods and what is more tensorflow-ish way.
[Edited] Whole code is below
import tensorflow as tf
import numpy as np
print("Tensorflow for tests!")
vec_dim = 5
num_hidden = 10
# method 1
input_seq1 = np.random.random([3,7,vec_dim])
# method 2
input_seq2 = np.random.random([5,10,vec_dim])
shape_seq2 = [5,9,vec_dim]
# seq: [batch, seq_len]
seq = tf.placeholder(tf.float32, shape=[None, None, vec_dim], name="seq_holder")
# Method 1
sliced_seq = seq[:,1:,:]
# Method 2
seq_shape = tf.placeholder(tf.int32, shape=[3])
sliced_seq = tf.slice(seq,[0,0,0], seq_shape)
cell = tf.contrib.rnn.GRUCell(num_units=num_hidden)
init_state = cell.zero_state(tf.shape(seq)[0], tf.float32)
outputs, last_state = tf.nn.dynamic_rnn(cell, sliced_seq, initial_state=init_state)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# method 1
# states = sess.run([sliced_seq], feed_dict={seq:input_seq1})
# print(states[0].shape)
# method 2
states = sess.run([sliced_seq], feed_dict={seq:input_seq2, seq_shape:shape_seq2})
print(states[0].shape)
.run
in a session, for example) with some input? I am having no trouble running those two instructions. – jdehesa