Here is how to prove a general list-length induction principle.
Require Import List Omega.
Section list_length_ind.
Variable A : Type.
Variable P : list A -> Prop.
Hypothesis H : forall xs, (forall l, length l < length xs -> P l) -> P xs.
Theorem list_length_ind : forall xs, P xs.
Proof.
assert (forall xs l : list A, length l <= length xs -> P l) as H_ind.
{ induction xs; intros l Hlen; apply H; intros l0 H0.
- inversion Hlen. omega.
- apply IHxs. simpl in Hlen. omega.
}
intros xs.
apply H_ind with (xs := xs).
omega.
Qed.
End list_length_ind.
You can use it like this
Theorem foo : forall l : list nat, ...
Proof.
induction l using list_length_ind.
...
That said, your concrete example example does not necessarily need induction on the length. You just need a sufficiently general induction hypothesis.
Import ListNotations.
(* ... some definitions elided here ... *)
Definition flip_state (s : state) :=
match s with
| A => B
| B => A
end.
Definition delta (s : state) (n : input) : state :=
match n with
| zero => s
| one => flip_state s
end.
(* ...some more definitions elided here ...*)
Theorem automata221: forall (w : list input),
extend_delta A w = B <-> Nat.odd (one_num w) = true.
Proof.
assert (forall w s, extend_delta s w = if Nat.odd (one_num w) then flip_state s else s).
{ induction w as [|i w]; intros s; simpl.
- reflexivity.
- rewrite IHw.
destruct i; simpl.
+ reflexivity.
+ rewrite <- Nat.negb_even, Nat.odd_succ.
destruct (Nat.even (one_num w)), s; reflexivity.
}
intros w.
rewrite H; simpl.
destruct (Nat.odd (one_num w)); intuition congruence.
Qed.