Pardon me if I use the wrong terminology but what I want is to train a set of data (using GaussianNB Naive Bayes from Scikit Learn), save the model/classifier and then load it whenever I need and predict a category.
from sklearn.externals import joblib
from sklearn.naive_bayes import GaussianNB
from sklearn.feature_extraction.text import TfidfVectorizer
self.vectorizer = TfidfVectorizer(decode_error='ignore')
self.X_train_tfidf = self.vectorizer.fit_transform(train_data)
# Fit the model to my training data
self.clf = self.gnb.fit(self.X_train_tfidf.toarray(), category)
# Save the classifier to file
joblib.dump(self.clf, 'trained/NB_Model.pkl')
# Save the vocabulary to file
joblib.dump(self.vectorizer.vocabulary_, 'trained/vectorizer_vocab.pkl')
#Next time, I read the saved classifier
self.clf = joblib.load('trained/NB_Model.pkl')
# Read the saved vocabulary
self.vocab =joblib.load('trained/vectorizer_vocab.pkl')
# Initializer the vectorizer
self.vectorizer = TfidfVectorizer(vocabulary=self.vocab, decode_error='ignore')
# Try to predict a category for new data
X_new_tfidf = self.vectorizer.transform(new_data)
print self.clf.predict(X_new_tfidf.toarray())
# After running the predict command above, I get the error
'idf vector is not fitted'
Can anyone tell me what I'm missing?
Note: The saving of the model, the reading of the saved model and trying to predict a new category are all different methods of a class. I have collapsed all of them into a single screen here to make for easier reading.
Thanks