1
votes

I have a few matrices defined as:

array <array <float, 3>, 23> mat1;
array <array <float, 23>, 3> mat2;
array <array <float, 2>, 23> mat3;
array <array <float, 23>, 2> mat4;

I have a matrix multiplication function defined as shown below:

void mat_mult(array <array <float, 3>, 23>& a, array <array <float, 23>, 3>& b, array <array <float, 3>, 3>& c);

The function call is such that matrix mat1 will be a, mat2 will be b and matrix c will store the result of a * b.

My understanding is that I will need to create a separate function to multiply mat3 and mat4. Is there any way to avoid it and create a single function for all multiplication operations, with matrices made of std::array object? Or in other words is it possible to pass 2d arrays without specifying any dimension and then pass dimensions separately?

3
Are you sure std::array is the type to prefer here? And have a look at this.sascha
Actually I believe I made a mistake with that. However, I am in the process of learning and I cannot go back in this particular project now. Would you say a vector is the best choice here?skr_robo
Yes, in 99,99% of all use-cases. I also don't think it's that much work to replace these types with vectors.sascha

3 Answers

3
votes

You can use template alias to reduce all the trouble array<array<...>>, then define another template <M,N,P> for matrix multiplication:

#include <iostream>
#include <array>

template <size_t M, size_t N>
using mat2f = std::array<std::array<float,N>, M>;

template <size_t M, size_t N, size_t P>
mat2f<M,P> operator*(const mat2f<M,N>& a, const mat2f<N,P>& b)
{
    mat2f<M,P> c;
    //...
    return c;
}

int main()
{
    mat2f<3,23> a;
    mat2f<23,3> b;
    auto c = a * b;
}
2
votes

Looks like I'm a few minutes late. I wanted to make sure the answer I provide compiles (g++-5, with -std=c++0x) and I wanted to check its result against Octave on a few examples. So in essence, my suggestion is very similar to that of @tntxtnt: use templates.

#include <iostream>
#include <array>

typedef long unsigned int lui;
template <lui N,lui M,lui K> 
std::array<std::array<float,N>,M> mult
(const std::array<std::array<float,N>,K>  & A, 
const std::array<std::array<float,K>,M> & B) 
{
  //of course you should use a more efficient algorithm, right now its     complexity is cubic
 std::array<std::array<float,N>,M> res;
 for(int i=0;i<N;++i)
 {
   for(int j=0;j<M;++j)

   {  
     res[i][j]=0;
     for(int k=0;k<K;++k)
       res[i][j]+=A[i][k]*B[k][j];
   }  
 } 
return res;
}

template<lui N,lui M> 
void print_matrix(const std::array<std::array<float,N>,M> & A) 
{
  for(int i=0;i<N;++i)
 {  
    for(int j=0;j<M;++j)
      std::cout<<A[i][j]<<"   ";
    std::cout<<std::endl;
  }  
}

int main()
{


  std::array<std::array<float,3>,4> A; 
  std::array<std::array<float,4>,2> B; 

  A[0][0]=14;A[0][1]=16;A[0][2]=2;A[0][3]=3;
  A[1][0]=12;A[1][1]=1;A[1][2]=3;A[1][3]=14;
  A[2][0]=5;A[2][1]=5;A[2][2]=31;A[2][3]=4;

  B[0][0]=1;B[0][1]=3;
  B[1][0]=2;B[1][1]=8;
  B[2][0]=0;B[2][1]=3;
  B[3][0]=-6;B[3][1]=3;

  print_matrix<3,4>(A);
  std::cout<<"*******************"<<std::endl;
  print_matrix<4,2>(B);
  std::cout<<"*******************"<<std::endl;
  print_matrix<3,2>(mult<3,2,4>(A,B));

  return 0; 
}
1
votes

I really like tntxtnt's way, but there is an answer using the types more native to your question:

template <int widthFinal, int sharedSize, int heightFinal> void mat_mult(array<array<float, widthFinal>,sharedSize>& a, array <array <float, sharedSize>, heightFinal>& b, array <array <float, widthFinal>, heightFinal>& c);

so you can see it all at once:

template <int widthFinal, int sharedSize, int heightFinal>
void mat_mult (
               array <array<float, widthFinal>,sharedSize>& a,
               array <array <float, sharedSize>, heightFinal>& b,
               array <array <float, widthFinal>, heightFinal>& c
               );

It uses something called a template (those <> brackets). Usage:

array <array <float, 2>, 3> mat1;
array <array <float, 3>, 1> mat2;
array <array <float, 2>, 1> matResult;
mat_mult<2,3,1>(mat1, mat2, matResult);

Note: you could also replace those ints with size_ts, which would likely be better design.

Also Note: You only need those 3 (not 4) template parameters because you know that (by matrix properties) the width of matrix1 must eqaul the height of matrix2. I called this property the "SharedSize":