I am trying to read about 90 gzipped JSON logfiles from Google Cloud Storage (GCS), each about 2GB large (10 GB uncompressed), parse them, and write them into a date-partitioned table to BigQuery (BQ) via Google Cloud Dataflow (GCDF).
Each file holds 7 days of data, the whole date range is about 2 years (730 days and counting). My current pipeline looks like this:
p.apply("Read logfile", TextIO.Read.from(bucket))
.apply("Repartition", Repartition.of())
.apply("Parse JSON", ParDo.of(new JacksonDeserializer()))
.apply("Extract and attach timestamp", ParDo.of(new ExtractTimestamps()))
.apply("Format output to TableRow", ParDo.of(new TableRowConverter()))
.apply("Window into partitions", Window.into(new TablePartWindowFun()))
.apply("Write to BigQuery", BigQueryIO.Write
.to(new DayPartitionFunc("someproject:somedataset", tableName))
.withSchema(TableRowConverter.getSchema())
.withCreateDisposition(BigQueryIO.Write.CreateDisposition.CREATE_IF_NEEDED)
.withWriteDisposition(BigQueryIO.Write.WriteDisposition.WRITE_APPEND));
The Repartition is something I've built in while trying to make the pipeline reshuffle after decompressing, I have tried running the pipeline with and without it. Parsing JSON works via a Jackon ObjectMapper and corresponding classes as suggested here. The TablePartWindowFun is taken from here, it is used to assign a partition to each entry in the PCollection.
The pipeline works for smaller files and not too many, but breaks for my real data set. I've selected large enough machine types and tried setting a maximum number of workers, as well as using autoscaling up to 100 of n1-highmem-16 machines. I've tried streaming and batch mode and disSizeGb values from 250 up to 1200 GB per worker.
The possible solutions I can think of at the moment are:
- Uncompress all files on GCS, and so enabling the dynamic work splitting between workers, as it is not possible to leverage GCS's gzip transcoding
- Building "many" parallel pipelines in a loop, with each pipeline processsing only a subset of the 90 files.
Option 2 seems to me like programming "around" a framework, is there another solution?
Addendum:
With Repartition after Reading the gzip JSON files in batch mode with 100 workers max (of type n1-highmem-4), the pipeline runs for about an hour with 12 workers and finishes the Reading as well as the first stage of Repartition. Then it scales up to 100 workers and processes the repartitioned PCollection. After it is done the graph looks like this:
Interestingly, when reaching this stage, first it's processing up to 1.5 million element/s, then the progress goes down to 0. The size of OutputCollection of the GroupByKey step in the picture first goes up and then down from about 300 million to 0 (there are about 1.8 billion elements in total). Like it is discarding something. Also, the ExpandIterable
and ParDo(Streaming Write)
run-time in the end is 0. The picture shows it slightly before running "backwards".
In the logs of the workers I see some exception thrown while executing request
messages that are coming from the com.google.api.client.http.HttpTransport
logger, but I can't find more info in Stackdriver.
Without Repartition after Reading the pipeline fails using n1-highmem-2
instances with out of memory errors at exactly the same step (everything after GroupByKey
) - using bigger instance types leads to exceptions like
java.util.concurrent.ExecutionException: java.io.IOException:
CANCELLED: Received RST_STREAM with error code 8 dataflow-...-harness-5l3s
talking to frontendpipeline-..-harness-pc98:12346
to(new DayPartitionFunc("someproject:somedataset", tableName))
? In Batch pipelines, the use of window-based partitioning is currently experimental (the Javadoc says unsupported in Batch). It may not scale as well as writing directly to a specific table. – Ben Chambers