I need to select elements in deeply nested data structures in Parquet files. The schema of the Parquet file is as follows:
root
|-- descriptor_type: string (nullable = true)
|-- src_date: long (nullable = true)
|-- downloaded: long (nullable = true)
|-- exit_nodes: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- fingerprint: string (nullable = true)
| | |-- published: long (nullable = true)
| | |-- last_status: long (nullable = true)
| | |-- exit_adresses: map (nullable = true)
| | | |-- key: string
| | | |-- value: long (valueContainsNull = true)
An entry in the dataset, serialized as JSON, looks like this:
{
"descriptor_type": "tordnsel 1.0",
"src_date": 1472781720000,
"downloaded": 1472781720000,
"exit_nodes": [
{
"fingerprint": "CECCFA65F3EB16CA8C0F9EAC9050C348515E26C5",
"published": 1472713568000,
"last_status": 1472716961000,
"exit_adresses": {
"178.217.187.39": 1472717419000
}
},
...
I'm using Spark 2.0 integrated in SnappyData 0.6 in which the Parquet file is adressed like this:
snappy> CREATE EXTERNAL TABLE stage USING PARQUET OPTIONS (path './testdata.parquet.snappy');
Selecting the first row yields the following result:
snappy> select * from stage limit 1;
descriptor_type|src_date |downloaded |exit_nodes
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
tordnsel 1.0 |1472781720000 |1472781720000 |5704000060110000e011000060120000d812000058130000d813000058140000d014000050150000d015000050160000d016000048170000c81700004018000&
The field 'exit_nodes' contains only one long string, not the array of structs that I was naïvely hoping for.
I can select a specific element in the 'exit_nodes' array by index:
snappy> select exit_nodes[0].fingerprint, exit_nodes[0].published, exit_nodes[0].exit_adresses from stage limit 1;
EXIT_NODES[0].FINGERPRINT |EXIT_NODES[0].PUBLISHED|EXIT_NODES[0].EXIT_ADRESSES
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
3D28E5FBD0C670C004E59D6CFDE7305BC8948FA8 |1472750744000 |15000000010000000800000037382e3134322e31392e3231330100000008000000b057f0e656010000
With the 'exit_adresses' map I had no luck though:
snappy> select exit_nodes[0].exit_adresses.key from stage limit 1;
EXIT_NODES[0].EXIT_ADRESSES[KEY]
--------------------------------
NULL
So the questions are:
- how to select the keys and values in one 'exit_adresses' map?
- how to select all records in the 'element's array, or all key-value pairs in the nested map, to import them from the Parquet file into an RDBMS?