I am trying to pass all columns from a data.frame matching a criteria to a function within the summarize function of dplyr as follows:
df %>% group_by(Version, Type) %>%
summarize(mcll(TrueClass, starts_with("pred")))
Error: argument is of length zero
Is there a way to do this? A working example follows:
Build a simulated data.frame of sample predictions. These are interpreted as the output of a classification algorithm.
library(dplyr)
nrow <- 40
ncol <- 4
set.seed(567879)
getProbs <- function(i) {
p <- runif(i)
return(p / sum(p))
}
df <- data.frame(matrix(NA, nrow, ncol))
for (i in seq(nrow)) df[i, ] <- getProbs(ncol)
names(df) <- paste0("pred.", seq(ncol))
add a column indicating the true class
df$TrueClass <- factor(ceiling(runif(nrow, min = 0, max = ncol)))
add categorical columns for sub-setting
df$Type <- c(rep("a", nrow / 2), rep("b", nrow / 2))
df$Version <- rep(1:4, times = nrow / 4)
now I want to calculate the Multiclass LogLoss for these predictions using the function below:
mcll <- function (act, pred)
{
if (class(act) != "factor") {
stop("act must be a factor")
}
pred[pred == 0] <- 1e-15
pred[pred == 1] <- 1 - 1e-15
dummies <- model.matrix(~act - 1)
if (nrow(dummies) != nrow(pred)) {
return(0)
}
return(-1 * (sum(dummies * log(pred)))/length(act))
}
this is easily done with the entire data set
act <- df$TrueClass
pred <- df %>% select(starts_with("pred"))
mcll(act, pred)
but I want to use dplyr group_by to calculate mcll for each subset of the data
df %>% group_by(Version, Type) %>%
summarize(mcll(TrueClass, starts_with("pred")))
Ideally I could do this without changing the mcll()
function, but I am open to doing that if it simplifies the other code.
Thanks!
EDIT: Note that the input to mcll is a vector of true values and a matrix of probabilities with one column for each "pred" column. For each subset of data, mcll should return a scalar. I can get exactly what I want with the code below, but I was hoping for something within the context of dplyr.
mcll_df <- data.frame(matrix(ncol = 3, nrow = 8))
names(mcll_df) <- c("Type", "Version", "mcll")
count = 1
for (ver in unique(df$Version)) {
for (type in unique(df$Type)) {
subdat <- df %>% filter(Type == type & Version == ver)
val <- mcll(subdat$TrueClass, subdat %>% select(starts_with("pred")))
mcll_df[count, ] <- c(Type = type, Version = ver, mcll = val)
count = count + 1
}
}
head(mcll_df)
Type Version mcll
1 a 1 1.42972507510096
2 b 1 1.97189000832723
3 a 2 1.97988830406062
4 b 2 1.21387875938737
5 a 3 1.30629638026735
6 b 3 1.48799237895462
starts_with
functions and I don't think that's available insummarize()
(or at least it wasn't when I looked). – MrFlickdf %>% group_by(Version, Type) %>% summarise_at(vars(starts_with("pred")), funs(mcll(TrueClass, .)))
should do it (?) – lukeA