I have tried to write a grammar to recognize expressions like:
(A + MAX(B) ) / ( C - AVERAGE(A) )
IF( A > AVERAGE(A), 0, 1 )
X / (MAX(X)
Unfortunately antlr3 fails with these errors:
error(210): The following sets of rules are mutually left-recursive [unaryExpression, additiveExpression, primaryExpression, formula, multiplicativeExpression]
error(211): DerivedKeywords.g:110:13: [fatal] rule booleanTerm has non-LL(*) decision due to recursive rule invocations reachable from alts 1,2. Resolve by left-factoring or using syntactic predicates or using backtrack=true option.
error(206): DerivedKeywords.g:110:13: Alternative 1: after matching input such as decision cannot predict what comes next due to recursion overflow to additiveExpression from formula
I have spent some hours trying to fix these, it would be great if anyone could at least help me fix the first problem. Thanks
Code:
grammar DerivedKeywords;
options {
output=AST;
//backtrack=true;
}
WS : ( ' ' | '\t' | '\n' | '\r' )
{ skip(); }
;
//for numbers
DIGIT
: '0'..'9'
;
//for both integer and real number
NUMBER
: (DIGIT)+ ( '.' (DIGIT)+ )?( ('E'|'e')('+'|'-')?(DIGIT)+ )?
;
// Boolean operatos
AND : 'AND';
OR : 'OR';
NOT : 'NOT';
EQ : '=';
NEQ : '!=';
GT : '>';
LT : '<';
GTE : '>=';
LTE : '<=';
COMMA : ',';
// Token for Functions
IF : 'IF';
MAX : 'MAX';
MIN : 'MIN';
AVERAGE : 'AVERAGE';
VARIABLE : 'A'..'Z' ('A'..'Z' | '0'..'9')*
;
// OPERATORS
LPAREN : '(' ;
RPAREN : ')' ;
DIV : '/' ;
PLUS : '+' ;
MINUS : '-' ;
STAR : '*' ;
expression : formula;
formula
: functionExpression
| additiveExpression
| LPAREN! a=formula RPAREN! // First Problem
;
additiveExpression
: a=multiplicativeExpression ( (MINUS^ | PLUS^ ) b=multiplicativeExpression )*
;
multiplicativeExpression
: a=unaryExpression ( (STAR^ | DIV^ ) b=unaryExpression )*
;
unaryExpression
: MINUS^ u=unaryExpression
| primaryExpression
;
functionExpression
: f=functionOperator LPAREN e=formula RPAREN
| IF LPAREN b=booleanExpression COMMA p=formula COMMA s=formula RPAREN
;
functionOperator :
MAX | MIN | AVERAGE;
primaryExpression
: NUMBER
// Used for scientific numbers
| DIGIT
| VARIABLE
| formula
;
// Boolean stuff
booleanExpression
: orExpression;
orExpression : a=andExpression (OR^ b=andExpression )*
;
andExpression
: a=notExpression (AND^ b=notExpression )*
;
notExpression
: NOT^ t=booleanTerm
| booleanTerm
;
booleanOperator :
GT | LT | EQ | GTE | LTE | NEQ;
booleanTerm : a=formula op=booleanOperator b=formula
| LPAREN! booleanTerm RPAREN! // Second problem
;