I need to convert an RDD to a single column o.a.s.ml.linalg.Vector DataFrame, in order to use the ML algorithms, specifically K-Means for this case. This is my RDD:
val parsedData = sc.textFile("/digits480x.csv").map(s => Row(org.apache.spark.mllib.linalg.Vectors.dense(s.split(',').slice(0,64).map(_.toDouble))))
I tried doing what this answer suggests with no luck, I suppose because you end up with a MLlib Vector, it throws a mismatch error when running the algorithm. Now if I change this:
import org.apache.spark.mllib.linalg.{Vectors, VectorUDT}
val schema = new StructType()
.add("features", new VectorUDT())
to this:
import org.apache.spark.ml.linalg.{Vectors, VectorUDT}
val parsedData = sc.textFile("/digits480x.csv").map(s => Row(org.apache.spark.ml.linalg.Vectors.dense(s.split(',').slice(0,64).map(_.toDouble))))
val schema = new StructType()
.add("features", new VectorUDT())
I would get an error because ML VectorUDT is private.
I also tried converting the RDD as an array of doubles to Dataframe, and get the ML Dense Vector like this:
var parsedData = sc.textFile("/home/pililo/Documents/Mi_Memoria/Codigo/Datasets/Digits/digits480x.csv").map(s => Row(s.split(',').slice(0,64).map(_.toDouble)))
parsedData: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row]
val schema2 = new StructType().add("features", ArrayType(DoubleType))
schema2: org.apache.spark.sql.types.StructType = StructType(StructField(features,ArrayType(DoubleType,true),true))
val df = spark.createDataFrame(parsedData, schema2)
df: org.apache.spark.sql.DataFrame = [features: array<double>]
val df2 = df.map{ case Row(features: Array[Double]) => Row(org.apache.spark.ml.linalg.Vectors.dense(features)) }
Which throws the following error, even though spark.implicits._
is imported:
error: Unable to find encoder for type stored in a Dataset. Primitive types (Int, String, etc) and Product types (case classes) are supported by importing spark.implicits._ Support for serializing other types will be added in future releases.
Any help is greatly appreciated, thanks!