I want to find correlations, p-values and 95% CI between one specific column and all other columns in a dataframe. The 'broom' package provides an example how to do that between two columns using cor.test with dplyr and pipes. For mtcars and, say, mpg column we can run a correlation with another column:
library(dplyr)
library(broom)
mtcars %>% do(tidy(cor.test(.$mpg, .$cyl)))
estimate statistic p.value parameter conf.low conf.high
1 -0.852162 -8.919699 6.112687e-10 30 -0.9257694 -0.7163171
The output is a single-row dataframe. I'd like to run cor.test for mpg with each column and send the output to a separate row. When mpg column is paired with every other column, the desired output would look like this:
estimate statistic p.value parameter conf.low conf.high
cyl -0.852162 -8.919699 6.112687e-10 30 -0.9257694 -0.7163171
disp -0.8475514 -8.747152 9.380327e-10 30 -0.9233594 -0.7081376
hp -0.7761684 -6.742389 1.787835e-07 30 -0.8852686 -0.5860994
drat 0.6811719 5.096042 1.77624e-05 30 0.4360484 0.832201
wt -0.8676594 -9.559044 1.293959e-10 30 -0.9338264 -0.7440872
qsec 0.418684 2.525213 0.01708199 30 0.08195487 0.6696186
vs 0.6640389 4.864385 3.415937e-05 30 0.410363 0.8223262
am 0.5998324 4.106127 0.0002850207 30 0.3175583 0.784452
gear 0.4802848 2.999191 0.005400948 30 0.1580618 0.7100628
carb -0.5509251 -3.61575 0.001084446 30 -0.754648 -0.2503183
Note the added row names in the first column. They show which column was paired with mpg for the cor.test. Ideally, I'd like to do this with dplyr and pipes.