I'm a newcommer to dplyr
and have following question. My has data.frame
one column serving as a grouping variable. Some rows don't belong to a group, the grouping column being NA
.
I need to add some columns to the data.frame using the dplyr
function mutate
. I'd prefer that dplyr
ignores all rows where the grouping column equals to NA
. I'll illustrate with an example:
library(dplyr)
set.seed(2)
# Setting up some dummy data
df <- data.frame(
Group = factor(c(rep("A",3),rep(NA,3),rep("B",5),rep(NA,2))),
Value = abs(as.integer(rnorm(13)*10))
)
# Using mutate to calculate differences between values within the rows of a group
df <- df %>%
group_by(Group) %>%
mutate(Diff = Value-lead(Value))
df
# Source: local data frame [13 x 3]
# Groups: Group [3]
#
# Group Value Diff
# (fctr) (int) (int)
# 1 A 8 7
# 2 A 1 -14
# 3 A 15 NA
# 4 NA 11 11
# 5 NA 0 -1
# 6 NA 1 -8
# 7 B 7 5
# 8 B 2 -17
# 9 B 19 18
# 10 B 1 -3
# 11 B 4 NA
# 12 NA 9 6
# 13 NA 3 NA
Calculating the differences between rows without a group makes no sense and is corrupting the data. I need to remove these rows and have done so like this:
df$Diff[is.na(df$Group)] <- NA
Is there a way to include the above command into the dplyr-chain using %>% ? Somewhere in the lines of:
df <- df %>%
group_by(Group) %>%
mutate(Diff = Value-lead(Value)) %>%
filter(!is.na(Group))
But where the rows without a group are not removed all together? Or even better, is there a way to make dplyr
ignore rows without a group?
There desired outcome would be:
# Source: local data frame [13 x 3]
# Groups: Group [3]
#
# Group Value Diff
# (fctr) (int) (int)
# 1 A 8 7
# 2 A 1 -14
# 3 A 15 NA
# 4 NA 11 NA
# 5 NA 0 NA
# 6 NA 1 NA
# 7 B 7 5
# 8 B 2 -17
# 9 B 19 18
# 10 B 1 -3
# 11 B 4 NA
# 12 NA 9 NA
# 13 NA 3 NA