I have some have some water quality sample data.
> dput(GrowingArealog90s[1:10,])
structure(list(SampleDate = structure(c(6948, 6949, 6950, 7516,
7517, 7782, 7783, 7784, 8092, 8106), class = "Date"), Flog90 = c(1.51851393987789,
1.48970743802793, 1.81243963000062, 0.273575501327576, 0.874218895695207,
1.89762709129044, 1.44012088794774, 0.301029995663981, 1.23603370361931,
0.301029995663981)), .Names = c("SampleDate", "Flog90"), class = c("tbl_df",
"data.frame"), row.names = c(NA, -10L))
This data is collected monthly, although some months are missed over the 25 year period.
I know there is so much help out there for converting dates to different formats but I have not been able to figure this out. I want to create a time series with just a month/year format, so that I can do things like decompose the data by month and run seasonal kendalls and such. I have tried so many different ways of converting my date to the desired format that I have completely confused myself. I don't care about the exact format as long as it is recognized month/year.
I also need to fill in the missing months with NAs.
I tried uploading the "SampleDate" column in a numeric format, "yyyymm". I could then merge that data frame with another that contained all the dates I need.
GA90 <- merge(Dates, GrowingArealog90s, by.x = "Date", by.y = "Date", all.x = TRUE)
However, when I converted the resulting data frame to a time series it would not recognize the 12 month frequency.
GA90ts <- as.ts(GA90, frequency(12))
> GA90ts
Time Series:
Start = 1
End = 324
Frequency = 1
Any help with this is appreciated.