We are working to update the documentation because, as you noted, the docs are incorrect in this case. Sorry about that! While we're working to update the docs, I wanted to get you a reply ASAP.
Casting problem
The most important problem you mention is the casting issue. Unfortunately,PySpark cannot use the BigQueryOutputFormat
to create Java GSON objects. The solution (workaround) is to save the output data into Google Cloud Storage (GCS) and then load it manually with the bq
command.
Code example
Here is a code sample which exports to GCS and loads the data into BigQuery. You could also use subprocess
and Python to execute the bq
command programatically.
#!/usr/bin/python
"""BigQuery I/O PySpark example."""
import json
import pprint
import pyspark
sc = pyspark.SparkContext()
# Use the Google Cloud Storage bucket for temporary BigQuery export data used
# by the InputFormat. This assumes the Google Cloud Storage connector for
# Hadoop is configured.
bucket = sc._jsc.hadoopConfiguration().get('fs.gs.system.bucket')
project = sc._jsc.hadoopConfiguration().get('fs.gs.project.id')
input_directory ='gs://{}/hadoop/tmp/bigquery/pyspark_input'.format(bucket)
conf = {
# Input Parameters
'mapred.bq.project.id': project,
'mapred.bq.gcs.bucket': bucket,
'mapred.bq.temp.gcs.path': input_directory,
'mapred.bq.input.project.id': 'publicdata',
'mapred.bq.input.dataset.id': 'samples',
'mapred.bq.input.table.id': 'shakespeare',
}
# Load data in from BigQuery.
table_data = sc.newAPIHadoopRDD(
'com.google.cloud.hadoop.io.bigquery.JsonTextBigQueryInputFormat',
'org.apache.hadoop.io.LongWritable',
'com.google.gson.JsonObject',
conf=conf)
# Perform word count.
word_counts = (
table_data
.map(lambda (_, record): json.loads(record))
.map(lambda x: (x['word'].lower(), int(x['word_count'])))
.reduceByKey(lambda x, y: x + y))
# Display 10 results.
pprint.pprint(word_counts.take(10))
# Stage data formatted as newline delimited json in Google Cloud Storage.
output_directory = 'gs://{}/hadoop/tmp/bigquery/pyspark_output'.format(bucket)
partitions = range(word_counts.getNumPartitions())
output_files = [output_directory + '/part-{:05}'.format(i) for i in partitions]
(word_counts
.map(lambda (w, c): json.dumps({'word': w, 'word_count': c}))
.saveAsTextFile(output_directory))
# Manually clean up the input_directory, otherwise there will be BigQuery export
# files left over indefinitely.
input_path = sc._jvm.org.apache.hadoop.fs.Path(input_directory)
input_path.getFileSystem(sc._jsc.hadoopConfiguration()).delete(input_path, True)
print """
###########################################################################
# Finish uploading data to BigQuery using a client e.g.
bq load --source_format NEWLINE_DELIMITED_JSON \
--schema 'word:STRING,word_count:INTEGER' \
wordcount_dataset.wordcount_table {files}
# Clean up the output
gsutil -m rm -r {output_directory}
###########################################################################
""".format(
files=','.join(output_files),
output_directory=output_directory)