What is special about the primary key?
What is the purpose of a table in a schema? What is the purpose of a key of a table? What is special about the primary key? The discussions around primary keys seem to miss the point that the primary key is part of a table, and that table is part of a schema. What is best for the table and table relationships should drive the key that is used.
Tables (and table relationships) contain facts about information you wish to record. These facts should be self-contained, meaningful, easily understood, and non-contradictory. From a design perspective, other tables added or removed from a schema should not impact on the table in question. There must be a purpose for storing the data related only to the information itself. Understanding what is stored in a table should not require undergoing a scientific research project. No fact stored for the same purpose should be stored more than once. Keys are a whole or part of the information being recorded which is unique, and the primary key is the specially designated key that is to be the primary access point to the table (i.e. it should be chosen for data consistency and usage, not just insert performance).
- ASIDE: The unfortunately side effect of most databases being designed
and developed by application programmers (which I am sometimes) is
that what is best for the application or application framework often
drives the primary key choice for tables. This leads to integer and
GUID keys (as these are simple to use for application frameworks) and
monolithic table designs (as these reduce the number of application
framework objects needed to represent the data in memory). These
application driven database design decisions lead to significant data
consistency problems when used at scale. Application frameworks
designed in this manner naturally lead to table at a time designs.
“Partial records” are created in tables and data filled in over time.
Multi-table interaction is avoided or when used causes inconsistent
data when the application functions improperly. These designs lead
to data that is meaningless (or difficult to understand), data spread
over tables (you have to look at other tables to make sense of the
current table), and duplicated data.
It was said that primary keys should be as small as necessary. I would says that keys should be only as large as necessary. Randomly adding meaningless fields to a table should be avoided. It is even worse to make a key out of a randomly added meaningless field, especially when it destroys the join dependency from another table to the non-primary key. This is only reasonable if there are no good candidate keys in the table, but this occurrence is surely a sign of a poor schema design if used for all tables.
It was also said that primary keys should never change as updating a primary key should always be out of the question. But update is the same as delete followed by insert. By this logic, you should never delete a record from a table with one key and then add another record with a second key. Adding the surrogate primary key does not remove the fact that the other key in the table exists. Updating a non-primary key of a table can destroy the meaning of the data if other tables have a dependency on that meaning through a surrogate key (e.g. a status table with a surrogate key having the status description changed from ‘Processed’ to ‘Cancelled’ would definitely corrupt the data). What should always be out of the question is destroying data meaning.
Having said this, I am grateful for the many poorly designed databases that exist in businesses today (meaningless-surrogate-keyed-data-corrupted-1NF behemoths), because that means there is an endless amount of work for people that understand proper database design. But on the sad side, it does sometimes make me feel like Sisyphus, but I bet he had one heck of a 401k (before the crash). Stay away from blogs and websites for important database design questions. If you are designing databases, look up CJ Date. You can also reference Celko for SQL Server, but only if you hold your nose first. On the Oracle side, reference Tom Kyte.