I have 3d mesh and I would like to draw each face a 2d shape.
What I have in mind is this: for each face 1. access the face normal 2. get a rotation matrix from the normal vector 3. multiply each vertex to the rotation matrix to get the vertices in a '2d like ' plane 4. get 2 coordinates from the transformed vertices
I don't know if this is the best way to do this, so any suggestion is welcome.
At the moment I'm trying to get a rotation matrix from the normal vector, how would I do this ?
UPDATE:
Here is a visual explanation of what I need:
At the moment I have quads, but there's no problem converting them into triangles.
I want to rotate the vertices of a face, so that one of the dimensions gets flattened.
I also need to store the original 3d rotation of the face. I imagine that would be inverse rotation of the face normal.
I think I'm a bit lost in space :)
Here's a basic prototype I did using Processing:
void setup(){
size(400,400,P3D);
background(255);
stroke(0,0,120);
smooth();
fill(0,120,0);
PVector x = new PVector(1,0,0);
PVector y = new PVector(0,1,0);
PVector z = new PVector(0,0,1);
PVector n = new PVector(0.378521084785,0.925412774086,0.0180059205741);//normal
PVector p0 = new PVector(0.372828125954,-0.178844243288,1.35241031647);
PVector p1 = new PVector(-1.25476706028,0.505195975304,0.412718296051);
PVector p2 = new PVector(-0.372828245163,0.178844287992,-1.35241031647);
PVector p3 = new PVector(1.2547672987,-0.505196034908,-0.412717700005);
PVector[] face = {p0,p1,p2,p3};
PVector[] face2d = new PVector[4];
PVector nr = PVector.add(n,new PVector());//clone normal
float rx = degrees(acos(n.dot(x)));//angle between normal and x axis
float ry = degrees(acos(n.dot(y)));//angle between normal and y axis
float rz = degrees(acos(n.dot(z)));//angle between normal and z axis
PMatrix3D r = new PMatrix3D();
//is this ok, or should I drop the builtin function, and add
//the rotations manually
r.rotateX(rx);
r.rotateY(ry);
r.rotateZ(rz);
print("original: ");println(face);
for(int i = 0 ; i < 4; i++){
PVector rv = new PVector();
PVector rn = new PVector();
r.mult(face[i],rv);
r.mult(nr,rn);
face2d[i] = PVector.add(face[i],rv);
}
print("rotated: ");println(face2d);
//draw
float scale = 100.0;
translate(width * .5,height * .5);//move to centre, Processing has 0,0 = Top,Lef
beginShape(QUADS);
for(int i = 0 ; i < 4; i++){
vertex(face2d[i].x * scale,face2d[i].y * scale,face2d[i].z * scale);
}
endShape();
line(0,0,0,nr.x*scale,nr.y*scale,nr.z*scale);
//what do I do with this ?
float c = cos(0), s = sin(0);
float x2 = n.x*n.x,y2 = n.y*n.y,z2 = n.z*n.z;
PMatrix3D m = new PMatrix3D(x2+(1-x2)*c, n.x*n.y*(1-c)-n.z*s, n.x*n.z*(1-c)+n.y*s, 0,
n.x*n.y*(1-c)+n.z*s,y2+(1-y2)*c,n.y*n.z*(1-c)-n.x*s,0,
n.x*n.y*(1-c)-n.y*s,n.x*n.z*(1-c)+n.x*s,z2-(1-z2)*c,0,
0,0,0,1);
}
Update
Sorry if I'm getting annoying, but I don't seem to get it.
Here's a bit of python using Blender's API:
import Blender
from Blender import *
import math
from math import sin,cos,radians,degrees
def getRotMatrix(n):
c = cos(0)
s = sin(0)
x2 = n.x*n.x
y2 = n.y*n.y
z2 = n.z*n.z
l1 = x2+(1-x2)*c, n.x*n.y*(1-c)+n.z*s, n.x*n.y*(1-c)-n.y*s
l2 = n.x*n.y*(1-c)-n.z*s,y2+(1-y2)*c,n.x*n.z*(1-c)+n.x*s
l3 = n.x*n.z*(1-c)+n.y*s,n.y*n.z*(1-c)-n.x*s,z2-(1-z2)*c
m = Mathutils.Matrix(l1,l2,l3)
return m
scn = Scene.GetCurrent()
ob = scn.objects.active.getData(mesh=True)#access mesh
out = ob.name+'\n'
#face0
f = ob.faces[0]
n = f.v[0].no
out += 'face: ' + str(f)+'\n'
out += 'normal: ' + str(n)+'\n'
m = getRotMatrix(n)
m.invert()
rvs = []
for v in range(0,len(f.v)):
out += 'original vertex'+str(v)+': ' + str(f.v[v].co) + '\n'
rvs.append(m*f.v[v].co)
out += '\n'
for v in range(0,len(rvs)):
out += 'original vertex'+str(v)+': ' + str(rvs[v]) + '\n'
f = open('out.txt','w')
f.write(out)
f.close
All I do is get the current object, access the first face, get the normal, get the vertices, calculate the rotation matrix, invert it, then multiply it by each vertex. Finally I write a simple output.
Here's the output for a default plane for which I rotated all the vertices manually by 30 degrees:
Plane.008
face: [MFace (0 3 2 1) 0]
normal: [0.000000, -0.499985, 0.866024](vector)
original vertex0: [1.000000, 0.866025, 0.500000](vector)
original vertex1: [-1.000000, 0.866026, 0.500000](vector)
original vertex2: [-1.000000, -0.866025, -0.500000](vector)
original vertex3: [1.000000, -0.866025, -0.500000](vector)
rotated vertex0: [1.000000, 0.866025, 1.000011](vector)
rotated vertex1: [-1.000000, 0.866026, 1.000012](vector)
rotated vertex2: [-1.000000, -0.866025, -1.000012](vector)
rotated vertex3: [1.000000, -0.866025, -1.000012](vector)
Here's the first face of the famous Suzanne mesh:
Suzanne.001
face: [MFace (46 0 2 44) 0]
normal: [0.987976, -0.010102, 0.154088](vector)
original vertex0: [0.468750, 0.242188, 0.757813](vector)
original vertex1: [0.437500, 0.164063, 0.765625](vector)
original vertex2: [0.500000, 0.093750, 0.687500](vector)
original vertex3: [0.562500, 0.242188, 0.671875](vector)
rotated vertex0: [0.468750, 0.242188, -0.795592](vector)
rotated vertex1: [0.437500, 0.164063, -0.803794](vector)
rotated vertex2: [0.500000, 0.093750, -0.721774](vector)
rotated vertex3: [0.562500, 0.242188, -0.705370](vector)
The vertices from the Plane.008 mesh are altered, the ones from Suzanne.001's mesh aren't. Shouldn't they ? Should I expect to get zeroes on one axis ? Once I got the rotation matrix from the normal vector, what is the rotation on x,y,z ?
Note: 1. Blender's Matrix supports the * operator 2.In Blender's coordinate system Z point's up. It looks like a right handed system, rotated 90 degrees on X.
Thanks