A very simple LDA implementation using gensin.
You can find more informations here: https://radimrehurek.com/gensim/tutorial.html
I hope it can help you
from nltk.corpus import stopwords
from nltk.tokenize import RegexpTokenizer
from nltk.stem import RSLPStemmer
from gensim import corpora, models
import gensim
st = RSLPStemmer()
texts = []
doc1 = "Veganism is both the practice of abstaining from the use of animal products, particularly in diet, and an associated philosophy that rejects the commodity status of animals"
doc2 = "A follower of either the diet or the philosophy is known as a vegan."
doc3 = "Distinctions are sometimes made between several categories of veganism."
doc4 = "Dietary vegans refrain from ingesting animal products. This means avoiding not only meat but also egg and dairy products and other animal-derived foodstuffs."
doc5 = "Some dietary vegans choose to wear clothing that includes animal products (for example, leather or wool)."
docs = [doc1, doc2, doc3, doc4, doc5]
for i in docs:
tokens = word_tokenize(i.lower())
stopped_tokens = [w for w in tokens if not w in stopwords.words('english')]
stemmed_tokens = [st.stem(i) for i in stopped_tokens]
texts.append(stemmed_tokens)
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]
# generate LDA model using gensim
ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=2, id2word = dictionary, passes=20)
print(ldamodel.print_topics(num_topics=2, num_words=4))
[(0, u'0.066*animal + 0.065*, + 0.047*product + 0.028*philosophy'), (1, u'0.085*. + 0.047*product + 0.028*dietary + 0.028*veg')]
gensim
, which you can very easilypip install
. Here's the topic page: radimrehurek.com/gensim/tut2.html. Re. your actual question, looks like... oh no wait I found it. – Eugene