0
votes

I trained caffe's Alexnet model for testing with more efficient model. Since my training is for pedestrians my image size is 64 x 80 images. I made changes to prototxt files to match to my trained image size. According to this tutorial, it will be better to set the convolution filter size to match the input image size. So my filter sizes have slight changes from the original Alexnet's provided prototxt files (I trained and tested with Alexnet's original prototxt files and get the same error at the same line mentioned below).

According to my calculation, image sizes after passing each layer will be

80x64x3 -> Conv1 -> 38x30x96
38x30x96 -> Pools -> 18x14x96
18x14x96 -> Conv2 -> 19x15x256
19x15x256 -> Pool2 -> 9x7x256
9x7x256 -> Conv3 -> 9x7x384
9x7x384 -> Conv4 -> 9x7x384
9x7x384 -> Conv5 -> 9x7x256
9x7x256 -> Pool5 -> 4x3x256

The error is at fc6 layer and line number 714 of test_predict_imagenet.cpp. I use test_predict_imagenet.cpp file to test the model.

CHECK_EQ(target_blobs[j]->width(), source_layer.blobs(j).width());

The error is

F0816 22:58:28.328047  3432 net.cpp:714] Check failed: target_blobs[j]->width()
== source_layer.blobs(j).width() (5120 vs. 1024)

I don't understand why it is like that.

My two prototxt files are shown below.

train_val.prototxt
name: "AlexNet"
layers {
  name: "data"
  type: DATA
  top: "data"
  top: "label"
  data_param {
    source: "../../examples/Alexnet/Alexnet_train_leveldb"
    batch_size: 200
  }
  transform_param {
    crop_size: 48
    mean_file: "../../examples/Alexnet/mean.binaryproto"
    mirror: true
  }
  include: { phase: TRAIN }
}
layers {
  name: "data"
  type: DATA
  top: "data"
  top: "label"
  data_param {
    source: "../../examples/Alexnet/Alexnet_test_leveldb"
    batch_size: 200
  }
  transform_param {
    crop_size: 48
    mean_file: "../../examples/Alexnet/mean.binaryproto"
    mirror: false
  }
  include: { phase: TEST }
}
layers {
  name: "conv1"
  type: CONVOLUTION
  bottom: "data"
  top: "conv1"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 96
    kernel_size: 6
    stride: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layers {
  name: "relu1"
  type: RELU
  bottom: "conv1"
  top: "conv1"
}
layers {
  name: "norm1"
  type: LRN
  bottom: "conv1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "pool1"
  type: POOLING
  bottom: "norm1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 4
    stride: 2
  }
}
layers {
  name: "conv2"
  type: CONVOLUTION
  bottom: "pool1"
  top: "conv2"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 4
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layers {
  name: "relu2"
  type: RELU
  bottom: "conv2"
  top: "conv2"
}
layers {
  name: "norm2"
  type: LRN
  bottom: "conv2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "pool2"
  type: POOLING
  bottom: "norm2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "conv3"
  type: CONVOLUTION
  bottom: "pool2"
  top: "conv3"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layers {
  name: "relu3"
  type: RELU
  bottom: "conv3"
  top: "conv3"
}
layers {
  name: "conv4"
  type: CONVOLUTION
  bottom: "conv3"
  top: "conv4"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layers {
  name: "relu4"
  type: RELU
  bottom: "conv4"
  top: "conv4"
}
layers {
  name: "conv5"
  type: CONVOLUTION
  bottom: "conv4"
  top: "conv5"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layers {
  name: "relu5"
  type: RELU
  bottom: "conv5"
  top: "conv5"
}
layers {
  name: "pool5"
  type: POOLING
  bottom: "conv5"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "fc6"
  type: INNER_PRODUCT
  bottom: "pool5"
  top: "fc6"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layers {
  name: "relu6"
  type: RELU
  bottom: "fc6"
  top: "fc6"
}
layers {
  name: "drop6"
  type: DROPOUT
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  name: "fc7"
  type: INNER_PRODUCT
  bottom: "fc6"
  top: "fc7"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layers {
  name: "relu7"
  type: RELU
  bottom: "fc7"
  top: "fc7"
}
layers {
  name: "drop7"
  type: DROPOUT
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  name: "fc8"
  type: INNER_PRODUCT
  bottom: "fc7"
  top: "fc8"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layers {
  name: "accuracy"
  type: ACCURACY
  bottom: "fc8"
  bottom: "label"
  top: "accuracy"
  include: { phase: TEST }
}
layers {
  name: "loss"
  type: SOFTMAX_LOSS
  bottom: "fc8"
  bottom: "label"
  top: "loss"
}

This is the testing file for the model.

deploy.txt
name: "AlexNet"
layers 
{
  name: "data"
  type: MEMORY_DATA
  top: "data"
  top: "label"
  memory_data_param 
  {
    batch_size: 1
    channels: 3
    height: 80
    width: 64
  }
  transform_param 
  {
    crop_size: 64
    mirror: false
    mean_file: "../../examples/Alexnet/mean.binaryproto"
  }
}

layers {
  name: "conv1"
  type: CONVOLUTION
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 96
    kernel_size: 6
    stride: 2
  }
  bottom: "data"
  top: "conv1"
}
layers {
  name: "relu1"
  type: RELU
  bottom: "conv1"
  top: "conv1"
}
layers {
  name: "norm1"
  type: LRN
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
  bottom: "conv1"
  top: "norm1"
}
layers {
  name: "pool1"
  type: POOLING
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
  bottom: "norm1"
  top: "pool1"
}
layers {
  name: "conv2"
  type: CONVOLUTION
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 4
    group: 2
  }
  bottom: "pool1"
  top: "conv2"
}
layers {
  name: "relu2"
  type: RELU
  bottom: "conv2"
  top: "conv2"
}
layers {
  name: "norm2"
  type: LRN
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
  bottom: "conv2"
  top: "norm2"
}
layers {
  name: "pool2"
  type: POOLING
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
  bottom: "norm2"
  top: "pool2"
}
layers {
  name: "conv3"
  type: CONVOLUTION
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
  }
  bottom: "pool2"
  top: "conv3"
}
layers {
  name: "relu3"
  type: RELU
  bottom: "conv3"
  top: "conv3"
}
layers {
  name: "conv4"
  type: CONVOLUTION
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    group: 2
  }
  bottom: "conv3"
  top: "conv4"
}
layers {
  name: "relu4"
  type: RELU
  bottom: "conv4"
  top: "conv4"
}
layers {
  name: "conv5"
  type: CONVOLUTION
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    group: 2
  }
  bottom: "conv4"
  top: "conv5"
}
layers {
  name: "relu5"
  type: RELU
  bottom: "conv5"
  top: "conv5"
}
layers {
  name: "pool5"
  type: POOLING
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
  bottom: "conv5"
  top: "pool5"
}
layers {
  name: "fc6"
  type: INNER_PRODUCT
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 4096
  }
  bottom: "pool5"
  top: "fc6"
}
layers {
  name: "relu6"
  type: RELU
  bottom: "fc6"
  top: "fc6"
}
layers {
  name: "drop6"
  type: DROPOUT
  dropout_param {
    dropout_ratio: 0.5
  }
  bottom: "fc6"
  top: "fc6"
}
layers {
  name: "fc7"
  type: INNER_PRODUCT
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 4096
  }
  bottom: "fc6"
  top: "fc7"
}
layers {
  name: "relu7"
  type: RELU
  bottom: "fc7"
  top: "fc7"
}
layers {
  name: "drop7"
  type: DROPOUT
  dropout_param {
    dropout_ratio: 0.5
  }
  bottom: "fc7"
  top: "fc7"
}
layers {
  name: "fc8"
  type: INNER_PRODUCT
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 2
  }
  bottom: "fc7"
  top: "fc8"
}
layers {
  name: "prob"
  type: SOFTMAX
  bottom: "fc8"
  top: "prob"
}

What is wrong with this error?

1

1 Answers

0
votes

Those who have the same problem as i faced, please look at the prototxt files shown below. There are some modifications made compared to the original prototxt files provided in the downloaded folders. I used 80x64 image sizes for the input in training and testing.

Train_val.prototxt
name: "AlexNet"
layers {
  name: "data"
  type: DATA
  top: "data"
  top: "label"
  data_param {
    source: "../../examples/Alexnet_2/Alexnet_train_leveldb"
    batch_size: 100
  }
  transform_param {
    mean_file: "../../examples/Alexnet_2/mean.binaryproto"

  }
  include: { phase: TRAIN }
}
layers {
  name: "data"
  type: DATA
  top: "data"
  top: "label"
  data_param {
    source: "../../examples/Alexnet_2/Alexnet_test_leveldb"
    batch_size: 100
  }
  transform_param {
        mean_file: "../../examples/Alexnet_2/mean.binaryproto"
      }
  include: { phase: TEST }
}
layers {
  name: "conv1"
  type: CONVOLUTION
  bottom: "data"
  top: "conv1"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 96
    kernel_size: 11
    stride: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layers {
  name: "relu1"
  type: RELU
  bottom: "conv1"
  top: "conv1"
}
layers {
  name: "pool1"
  type: POOLING
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "norm1"
  type: LRN
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "conv2"
  type: CONVOLUTION
  bottom: "norm1"
  top: "conv2"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu2"
  type: RELU
  bottom: "conv2"
  top: "conv2"
}
layers {
  name: "pool2"
  type: POOLING
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "norm2"
  type: LRN
  bottom: "pool2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "conv3"
  type: CONVOLUTION
  bottom: "norm2"
  top: "conv3"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layers {
  name: "relu3"
  type: RELU
  bottom: "conv3"
  top: "conv3"
}
layers {
  name: "conv4"
  type: CONVOLUTION
  bottom: "conv3"
  top: "conv4"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu4"
  type: RELU
  bottom: "conv4"
  top: "conv4"
}
layers {
  name: "conv5"
  type: CONVOLUTION
  bottom: "conv4"
  top: "conv5"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu5"
  type: RELU
  bottom: "conv5"
  top: "conv5"
}
layers {
  name: "pool5"
  type: POOLING
  bottom: "conv5"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "fc6"
  type: INNER_PRODUCT
  bottom: "pool5"
  top: "fc6"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu6"
  type: RELU
  bottom: "fc6"
  top: "fc6"
}
layers {
  name: "drop6"
  type: DROPOUT
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  name: "fc7"
  type: INNER_PRODUCT
  bottom: "fc6"
  top: "fc7"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu7"
  type: RELU
  bottom: "fc7"
  top: "fc7"
}
layers {
  name: "drop7"
  type: DROPOUT
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  name: "fc8"
  type: INNER_PRODUCT
  bottom: "fc7"
  top: "fc8"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layers {
  name: "accuracy"
  type: ACCURACY
  bottom: "fc8"
  bottom: "label"
  top: "accuracy"
  include: { phase: TEST }
}
layers {
  name: "loss"
  type: SOFTMAX_LOSS
  bottom: "fc8"
  bottom: "label"
  top: "loss"
}

test.prototxt
name: "CaffeNet"
layers 
{
  name: "data"
  type: MEMORY_DATA
  top: "data"
  top: "label"
  memory_data_param 
  {
    batch_size: 1
    channels: 3
    height: 80
    width: 64
  }
  transform_param 
  {
    crop_size: 64
    mirror: false
    mean_file: "../../examples/Alexnet_2/mean.binaryproto"
  }
}
layers {
  name: "conv1"
  type: CONVOLUTION
  bottom: "data"
  top: "conv1"
  convolution_param {
    num_output: 96
    kernel_size: 11
    stride: 2
  }
}
layers {
  name: "relu1"
  type: RELU
  bottom: "conv1"
  top: "conv1"
}
layers {
  name: "pool1"
  type: POOLING
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "norm1"
  type: LRN
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "conv2"
  type: CONVOLUTION
  bottom: "norm1"
  top: "conv2"
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    group: 2
  }
}
layers {
  name: "relu2"
  type: RELU
  bottom: "conv2"
  top: "conv2"
}
layers {
  name: "pool2"
  type: POOLING
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "norm2"
  type: LRN
  bottom: "pool2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "conv3"
  type: CONVOLUTION
  bottom: "norm2"
  top: "conv3"
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
  }
}
layers {
  name: "relu3"
  type: RELU
  bottom: "conv3"
  top: "conv3"
}
layers {
  name: "conv4"
  type: CONVOLUTION
  bottom: "conv3"
  top: "conv4"
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    group: 2
  }
}
layers {
  name: "relu4"
  type: RELU
  bottom: "conv4"
  top: "conv4"
}
layers {
  name: "conv5"
  type: CONVOLUTION
  bottom: "conv4"
  top: "conv5"
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    group: 2
  }
}
layers {
  name: "relu5"
  type: RELU
  bottom: "conv5"
  top: "conv5"
}
layers {
  name: "pool5"
  type: POOLING
  bottom: "conv5"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "fc6"
  type: INNER_PRODUCT
  bottom: "pool5"
  top: "fc6"
  inner_product_param {
    num_output: 4096
  }
}
layers {
  name: "relu6"
  type: RELU
  bottom: "fc6"
  top: "fc6"
}
layers {
  name: "drop6"
  type: DROPOUT
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  name: "fc7"
  type: INNER_PRODUCT
  bottom: "fc6"
  top: "fc7"
  inner_product_param {
    num_output: 4096
  }
}
layers {
  name: "relu7"
  type: RELU
  bottom: "fc7"
  top: "fc7"
}
layers {
  name: "drop7"
  type: DROPOUT
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  name: "fc8"
  type: INNER_PRODUCT
  bottom: "fc7"
  top: "fc8"
  inner_product_param {
    num_output: 2
  }
}
layers {
  name: "prob"
  type: SOFTMAX
  bottom: "fc8"
  top: "prob"
}
layers {
  name: "output"
  type: ARGMAX
  bottom: "prob"
  top: "output"
}