Here's a straight translation of András's answer:
%default total
foldr : {a : Type} -> (F : List a -> Type) ->
(f : {xs : List a} -> (x : a) -> F xs -> F (x :: xs)) ->
F [] -> (xs : List a) -> F xs
foldr F f z [] = z
foldr F f z (x :: xs) = f x (foldr F f z xs)
Zip1 : Type -> Type -> Type -> Nat -> Type
Zip1 A B C Z = C -> List (A, B)
Zip1 A B C (S n) = (A -> Zip1 A B C n -> List (A, B)) -> List (A, B)
Zip2 : Type -> Type -> Type -> Nat -> Type
Zip2 A B C Z = A -> C -> List (A, B)
Zip2 A B C (S n) = A -> (Zip2 A B C n -> List (A, B)) -> List (A, B)
data Ex2 : (a : Type) -> (b : Type) -> (p : a -> b -> Type) -> Type where
MkEx2 : (x : a) -> (y : b) -> p x y -> Ex2 a b p
unifyZip : (A : Type) -> (B : Type) -> (n : Nat) -> (m : Nat) -> Ex2 Type Type (\C1 => \C2 => Zip1 A B C1 n = (Zip2 A B C2 m -> List (A, B)))
unifyZip A B Z m = MkEx2 (Zip2 A B Void m) Void Refl
unifyZip A B (S n) Z = MkEx2 Void (Zip1 A B Void n) Refl
unifyZip A B (S n) (S m) with (unifyZip A B n m)
| MkEx2 C1 C2 p = MkEx2 C1 C2 (cong {f = \t => (A -> t -> List (A, B)) -> List (A, B)} p)
zip1 : (A : Type) -> (B : Type) -> (C : Type) -> (xs : List A) -> Zip1 A B C (length xs)
zip1 A B C = foldr (Zip1 A B C . length) (\x => \r => \k => k x r) (const [])
zip2 : (A : Type) -> (B : Type) -> (C : Type) -> (ys : List B) -> Zip2 A B C (length ys)
zip2 A B C = foldr (Zip2 A B C . length) (\y => \k => \x => \r => (x, y) :: r k) (const . const $ [])
rewriteTy : a = b -> a -> b
rewriteTy Refl x = x
zipp : {A : Type} -> {B : Type} -> List A -> List B -> List (A, B)
zipp {A} {B} xs ys with (unifyZip A B (length xs) (length ys))
| MkEx2 C1 C2 p with (zip1 A B C1 xs)
| zxs with (zip2 A B C2 ys)
| zys = rewriteTy p zxs zys
For simplicity's sake, I defined my own Ex2
and rewriteTy
instead of wrestling with the standard library. Ex2 a b P
can probably be expressed as DPair (a, b) (uncurry P)
.