Thanks to Olivia for this great and detailed post!
I recently started to program a streaming app on iPad Pro with Xamarin forms and this article helped a lot and I found many references to it throughout the web.
I suppose many people re-wrote Olivia's example in Xamarin already and I don't claim to be the best programmer in the world. But as nobody posted a C#/Xamarin version here yet and I would like to give something back to the community for the great post above, here is my C# / Xamarin version. Maybe it helps someone to to speed up progress in her or his project.
I kept close to Olivia's example, I even kept most of her comments.
First, for I prefer dealing with enums rather than numbers, I declared this NALU enum.
For the sake of completeness I also added some "exotic" NALU types I found on the internet:
public enum NALUnitType : byte
{
NALU_TYPE_UNKNOWN = 0,
NALU_TYPE_SLICE = 1,
NALU_TYPE_DPA = 2,
NALU_TYPE_DPB = 3,
NALU_TYPE_DPC = 4,
NALU_TYPE_IDR = 5,
NALU_TYPE_SEI = 6,
NALU_TYPE_SPS = 7,
NALU_TYPE_PPS = 8,
NALU_TYPE_AUD = 9,
NALU_TYPE_EOSEQ = 10,
NALU_TYPE_EOSTREAM = 11,
NALU_TYPE_FILL = 12,
NALU_TYPE_13 = 13,
NALU_TYPE_14 = 14,
NALU_TYPE_15 = 15,
NALU_TYPE_16 = 16,
NALU_TYPE_17 = 17,
NALU_TYPE_18 = 18,
NALU_TYPE_19 = 19,
NALU_TYPE_20 = 20,
NALU_TYPE_21 = 21,
NALU_TYPE_22 = 22,
NALU_TYPE_23 = 23,
NALU_TYPE_STAP_A = 24,
NALU_TYPE_STAP_B = 25,
NALU_TYPE_MTAP16 = 26,
NALU_TYPE_MTAP24 = 27,
NALU_TYPE_FU_A = 28,
NALU_TYPE_FU_B = 29,
}
More or less for convenience reasons I also defined an additional dictionary for the NALU descriptions:
public static Dictionary<NALUnitType, string> GetDescription { get; } =
new Dictionary<NALUnitType, string>()
{
{ NALUnitType.NALU_TYPE_UNKNOWN, "Unspecified (non-VCL)" },
{ NALUnitType.NALU_TYPE_SLICE, "Coded slice of a non-IDR picture (VCL) [P-frame]" },
{ NALUnitType.NALU_TYPE_DPA, "Coded slice data partition A (VCL)" },
{ NALUnitType.NALU_TYPE_DPB, "Coded slice data partition B (VCL)" },
{ NALUnitType.NALU_TYPE_DPC, "Coded slice data partition C (VCL)" },
{ NALUnitType.NALU_TYPE_IDR, "Coded slice of an IDR picture (VCL) [I-frame]" },
{ NALUnitType.NALU_TYPE_SEI, "Supplemental Enhancement Information [SEI] (non-VCL)" },
{ NALUnitType.NALU_TYPE_SPS, "Sequence Parameter Set [SPS] (non-VCL)" },
{ NALUnitType.NALU_TYPE_PPS, "Picture Parameter Set [PPS] (non-VCL)" },
{ NALUnitType.NALU_TYPE_AUD, "Access Unit Delimiter [AUD] (non-VCL)" },
{ NALUnitType.NALU_TYPE_EOSEQ, "End of Sequence (non-VCL)" },
{ NALUnitType.NALU_TYPE_EOSTREAM, "End of Stream (non-VCL)" },
{ NALUnitType.NALU_TYPE_FILL, "Filler data (non-VCL)" },
{ NALUnitType.NALU_TYPE_13, "Sequence Parameter Set Extension (non-VCL)" },
{ NALUnitType.NALU_TYPE_14, "Prefix NAL Unit (non-VCL)" },
{ NALUnitType.NALU_TYPE_15, "Subset Sequence Parameter Set (non-VCL)" },
{ NALUnitType.NALU_TYPE_16, "Reserved (non-VCL)" },
{ NALUnitType.NALU_TYPE_17, "Reserved (non-VCL)" },
{ NALUnitType.NALU_TYPE_18, "Reserved (non-VCL)" },
{ NALUnitType.NALU_TYPE_19, "Coded slice of an auxiliary coded picture without partitioning (non-VCL)" },
{ NALUnitType.NALU_TYPE_20, "Coded Slice Extension (non-VCL)" },
{ NALUnitType.NALU_TYPE_21, "Coded Slice Extension for Depth View Components (non-VCL)" },
{ NALUnitType.NALU_TYPE_22, "Reserved (non-VCL)" },
{ NALUnitType.NALU_TYPE_23, "Reserved (non-VCL)" },
{ NALUnitType.NALU_TYPE_STAP_A, "STAP-A Single-time Aggregation Packet (non-VCL)" },
{ NALUnitType.NALU_TYPE_STAP_B, "STAP-B Single-time Aggregation Packet (non-VCL)" },
{ NALUnitType.NALU_TYPE_MTAP16, "MTAP16 Multi-time Aggregation Packet (non-VCL)" },
{ NALUnitType.NALU_TYPE_MTAP24, "MTAP24 Multi-time Aggregation Packet (non-VCL)" },
{ NALUnitType.NALU_TYPE_FU_A, "FU-A Fragmentation Unit (non-VCL)" },
{ NALUnitType.NALU_TYPE_FU_B, "FU-B Fragmentation Unit (non-VCL)" }
};
Here comes my main decoding procedure. I assume the received frame as raw byte array:
public void Decode(byte[] frame)
{
uint frameSize = (uint)frame.Length;
SendDebugMessage($"Received frame of {frameSize} bytes.");
// I know how my H.264 data source's NALUs looks like so I know start code index is always 0.
// if you don't know where it starts, you can use a for loop similar to how I find the 2nd and 3rd start codes
uint firstStartCodeIndex = 0;
uint secondStartCodeIndex = 0;
uint thirdStartCodeIndex = 0;
// length of NALU start code in bytes.
// for h.264 the start code is 4 bytes and looks like this: 0 x 00 00 00 01
const uint naluHeaderLength = 4;
// check the first 8bits after the NALU start code, mask out bits 0-2, the NALU type ID is in bits 3-7
uint startNaluIndex = firstStartCodeIndex + naluHeaderLength;
byte startByte = frame[startNaluIndex];
int naluTypeId = startByte & 0x1F; // 0001 1111
NALUnitType naluType = (NALUnitType)naluTypeId;
SendDebugMessage($"1st Start Code Index: {firstStartCodeIndex}");
SendDebugMessage($"1st NALU Type: '{NALUnit.GetDescription[naluType]}' ({(int)naluType})");
// bits 1 and 2 are the NRI
int nalRefIdc = startByte & 0x60; // 0110 0000
SendDebugMessage($"1st NRI (NAL Ref Idc): {nalRefIdc}");
// IF the very first NALU type is an IDR -> handle it like a slice frame (-> re-cast it to type 1 [Slice])
if (naluType == NALUnitType.NALU_TYPE_IDR)
{
naluType = NALUnitType.NALU_TYPE_SLICE;
}
// if we haven't already set up our format description with our SPS PPS parameters,
// we can't process any frames except type 7 that has our parameters
if (naluType != NALUnitType.NALU_TYPE_SPS && this.FormatDescription == null)
{
SendDebugMessage("Video Error: Frame is not an I-Frame and format description is null.");
return;
}
// NALU type 7 is the SPS parameter NALU
if (naluType == NALUnitType.NALU_TYPE_SPS)
{
// find where the second PPS 4byte start code begins (0x00 00 00 01)
// from which we also get the length of the first SPS code
for (uint i = firstStartCodeIndex + naluHeaderLength; i < firstStartCodeIndex + 40; i++)
{
if (frame[i] == 0x00 && frame[i + 1] == 0x00 && frame[i + 2] == 0x00 && frame[i + 3] == 0x01)
{
secondStartCodeIndex = i;
this.SpsSize = secondStartCodeIndex; // includes the header in the size
SendDebugMessage($"2nd Start Code Index: {secondStartCodeIndex} -> SPS Size: {this.SpsSize}");
break;
}
}
// find what the second NALU type is
startByte = frame[secondStartCodeIndex + naluHeaderLength];
naluType = (NALUnitType)(startByte & 0x1F);
SendDebugMessage($"2nd NALU Type: '{NALUnit.GetDescription[naluType]}' ({(int)naluType})");
// bits 1 and 2 are the NRI
nalRefIdc = startByte & 0x60; // 0110 0000
SendDebugMessage($"2nd NRI (NAL Ref Idc): {nalRefIdc}");
}
// type 8 is the PPS parameter NALU
if (naluType == NALUnitType.NALU_TYPE_PPS)
{
// find where the NALU after this one starts so we know how long the PPS parameter is
for (uint i = this.SpsSize + naluHeaderLength; i < this.SpsSize + 30; i++)
{
if (frame[i] == 0x00 && frame[i + 1] == 0x00 && frame[i + 2] == 0x00 && frame[i + 3] == 0x01)
{
thirdStartCodeIndex = i;
this.PpsSize = thirdStartCodeIndex - this.SpsSize;
SendDebugMessage($"3rd Start Code Index: {thirdStartCodeIndex} -> PPS Size: {this.PpsSize}");
break;
}
}
// allocate enough data to fit the SPS and PPS parameters into our data objects.
// VTD doesn't want you to include the start code header (4 bytes long) so we subtract 4 here
byte[] sps = new byte[this.SpsSize - naluHeaderLength];
byte[] pps = new byte[this.PpsSize - naluHeaderLength];
// copy in the actual sps and pps values, again ignoring the 4 byte header
Array.Copy(frame, naluHeaderLength, sps, 0, sps.Length);
Array.Copy(frame, this.SpsSize + naluHeaderLength, pps,0, pps.Length);
// create video format description
List<byte[]> parameterSets = new List<byte[]> { sps, pps };
this.FormatDescription = CMVideoFormatDescription.FromH264ParameterSets(parameterSets, (int)naluHeaderLength, out CMFormatDescriptionError formatDescriptionError);
SendDebugMessage($"Creation of CMVideoFormatDescription: {((formatDescriptionError == CMFormatDescriptionError.None)? $"Successful! (Video Codec = {this.FormatDescription.VideoCodecType}, Dimension = {this.FormatDescription.Dimensions.Height} x {this.FormatDescription.Dimensions.Width}px, Type = {this.FormatDescription.MediaType})" : $"Failed ({formatDescriptionError})")}");
// re-create the decompression session whenever new PPS data was received
this.DecompressionSession = this.CreateDecompressionSession(this.FormatDescription);
// now lets handle the IDR frame that (should) come after the parameter sets
// I say "should" because that's how I expect my H264 stream to work, YMMV
startByte = frame[thirdStartCodeIndex + naluHeaderLength];
naluType = (NALUnitType)(startByte & 0x1F);
SendDebugMessage($"3rd NALU Type: '{NALUnit.GetDescription[naluType]}' ({(int)naluType})");
// bits 1 and 2 are the NRI
nalRefIdc = startByte & 0x60; // 0110 0000
SendDebugMessage($"3rd NRI (NAL Ref Idc): {nalRefIdc}");
}
// type 5 is an IDR frame NALU.
// The SPS and PPS NALUs should always be followed by an IDR (or IFrame) NALU, as far as I know.
if (naluType == NALUnitType.NALU_TYPE_IDR || naluType == NALUnitType.NALU_TYPE_SLICE)
{
// find the offset or where IDR frame NALU begins (after the SPS and PPS NALUs end)
uint offset = (naluType == NALUnitType.NALU_TYPE_SLICE)? 0 : this.SpsSize + this.PpsSize;
uint blockLength = frameSize - offset;
SendDebugMessage($"Block Length (NALU type '{naluType}'): {blockLength}");
var blockData = new byte[blockLength];
Array.Copy(frame, offset, blockData, 0, blockLength);
// write the size of the block length (IDR picture data) at the beginning of the IDR block.
// this means we replace the start code header (0 x 00 00 00 01) of the IDR NALU with the block size.
// AVCC format requires that you do this.
// This next block is very specific to my application and wasn't in Olivia's example:
// For my stream is encoded by NVIDEA NVEC I had to deal with additional 3-byte start codes within my IDR/SLICE frame.
// These start codes must be replaced by 4 byte start codes adding the block length as big endian.
// ======================================================================================================================================================
// find all 3 byte start code indices (0x00 00 01) within the block data (including the first 4 bytes of NALU header)
uint startCodeLength = 3;
List<uint> foundStartCodeIndices = new List<uint>();
for (uint i = 0; i < blockData.Length; i++)
{
if (blockData[i] == 0x00 && blockData[i + 1] == 0x00 && blockData[i + 2] == 0x01)
{
foundStartCodeIndices.Add(i);
byte naluByte = blockData[i + startCodeLength];
var tmpNaluType = (NALUnitType)(naluByte & 0x1F);
SendDebugMessage($"3-Byte Start Code (0x000001) found at index: {i} (NALU type {(int)tmpNaluType} '{NALUnit.GetDescription[tmpNaluType]}'");
}
}
// determine the byte length of each slice
uint totalLength = 0;
List<uint> sliceLengths = new List<uint>();
for (int i = 0; i < foundStartCodeIndices.Count; i++)
{
// for convenience only
bool isLastValue = (i == foundStartCodeIndices.Count-1);
// start-index to bit right after the start code
uint startIndex = foundStartCodeIndices[i] + startCodeLength;
// set end-index to bit right before beginning of next start code or end of frame
uint endIndex = isLastValue ? (uint) blockData.Length : foundStartCodeIndices[i + 1];
// now determine slice length including NALU header
uint sliceLength = (endIndex - startIndex) + naluHeaderLength;
// add length to list
sliceLengths.Add(sliceLength);
// sum up total length of all slices (including NALU header)
totalLength += sliceLength;
}
// Arrange slices like this:
// [4byte slice1 size][slice1 data][4byte slice2 size][slice2 data]...[4byte slice4 size][slice4 data]
// Replace 3-Byte Start Code with 4-Byte start code, then replace the 4-Byte start codes with the length of the following data block (big endian).
// https://stackguides.com/questions/65576349/nvidia-nvenc-media-foundation-encoded-h-264-frames-not-decoded-properly-using
byte[] finalBuffer = new byte[totalLength];
uint destinationIndex = 0;
// create a buffer for each slice and append it to the final block buffer
for (int i = 0; i < sliceLengths.Count; i++)
{
// create byte vector of size of current slice, add additional bytes for NALU start code length
byte[] sliceData = new byte[sliceLengths[i]];
// now copy the data of current slice into the byte vector,
// start reading data after the 3-byte start code
// start writing data after NALU start code,
uint sourceIndex = foundStartCodeIndices[i] + startCodeLength;
long dataLength = sliceLengths[i] - naluHeaderLength;
Array.Copy(blockData, sourceIndex, sliceData, naluHeaderLength, dataLength);
// replace the NALU start code with data length as big endian
byte[] sliceLengthInBytes = BitConverter.GetBytes(sliceLengths[i] - naluHeaderLength);
Array.Reverse(sliceLengthInBytes);
Array.Copy(sliceLengthInBytes, 0, sliceData, 0, naluHeaderLength);
// add the slice data to final buffer
Array.Copy(sliceData, 0, finalBuffer, destinationIndex, sliceData.Length);
destinationIndex += sliceLengths[i];
}
// ======================================================================================================================================================
// from here we are back on track with Olivia's code:
// now create block buffer from final byte[] buffer
CMBlockBufferFlags flags = CMBlockBufferFlags.AssureMemoryNow | CMBlockBufferFlags.AlwaysCopyData;
var finalBlockBuffer = CMBlockBuffer.FromMemoryBlock(finalBuffer, 0, flags, out CMBlockBufferError blockBufferError);
SendDebugMessage($"Creation of Final Block Buffer: {(blockBufferError == CMBlockBufferError.None ? "Successful!" : $"Failed ({blockBufferError})")}");
if (blockBufferError != CMBlockBufferError.None) return;
// now create the sample buffer
nuint[] sampleSizeArray = new nuint[] { totalLength };
CMSampleBuffer sampleBuffer = CMSampleBuffer.CreateReady(finalBlockBuffer, this.FormatDescription, 1, null, sampleSizeArray, out CMSampleBufferError sampleBufferError);
SendDebugMessage($"Creation of Final Sample Buffer: {(sampleBufferError == CMSampleBufferError.None ? "Successful!" : $"Failed ({sampleBufferError})")}");
if (sampleBufferError != CMSampleBufferError.None) return;
// if sample buffer was successfully created -> pass sample to decoder
// set sample attachments
CMSampleBufferAttachmentSettings[] attachments = sampleBuffer.GetSampleAttachments(true);
var attachmentSetting = attachments[0];
attachmentSetting.DisplayImmediately = true;
// enable async decoding
VTDecodeFrameFlags decodeFrameFlags = VTDecodeFrameFlags.EnableAsynchronousDecompression;
// add time stamp
var currentTime = DateTime.Now;
var currentTimePtr = new IntPtr(currentTime.Ticks);
// send the sample buffer to a VTDecompressionSession
var result = DecompressionSession.DecodeFrame(sampleBuffer, decodeFrameFlags, currentTimePtr, out VTDecodeInfoFlags decodeInfoFlags);
if (result == VTStatus.Ok)
{
SendDebugMessage($"Executing DecodeFrame(..): Successful! (Info: {decodeInfoFlags})");
}
else
{
NSError error = new NSError(CFErrorDomain.OSStatus, (int)result);
SendDebugMessage($"Executing DecodeFrame(..): Failed ({(VtStatusEx)result} [0x{(int)result:X8}] - {error}) - Info: {decodeInfoFlags}");
}
}
}
My function to create the decompression session looks like this:
private VTDecompressionSession CreateDecompressionSession(CMVideoFormatDescription formatDescription)
{
VTDecompressionSession.VTDecompressionOutputCallback callBackRecord = this.DecompressionSessionDecodeFrameCallback;
VTVideoDecoderSpecification decoderSpecification = new VTVideoDecoderSpecification
{
EnableHardwareAcceleratedVideoDecoder = true
};
CVPixelBufferAttributes destinationImageBufferAttributes = new CVPixelBufferAttributes();
try
{
var decompressionSession = VTDecompressionSession.Create(callBackRecord, formatDescription, decoderSpecification, destinationImageBufferAttributes);
SendDebugMessage("Video Decompression Session Creation: Successful!");
return decompressionSession;
}
catch (Exception e)
{
SendDebugMessage($"Video Decompression Session Creation: Failed ({e.Message})");
return null;
}
}
The decompression session callback routine:
private void DecompressionSessionDecodeFrameCallback(
IntPtr sourceFrame,
VTStatus status,
VTDecodeInfoFlags infoFlags,
CVImageBuffer imageBuffer,
CMTime presentationTimeStamp,
CMTime presentationDuration)
{
if (status != VTStatus.Ok)
{
NSError error = new NSError(CFErrorDomain.OSStatus, (int)status);
SendDebugMessage($"Decompression: Failed ({(VtStatusEx)status} [0x{(int)status:X8}] - {error})");
}
else
{
SendDebugMessage("Decompression: Successful!");
try
{
var image = GetImageFromImageBuffer(imageBuffer);
// In my application I do not use a display layer but send the decoded image directly by an event:
ImageSource imgSource = ImageSource.FromStream(() => image.AsPNG().AsStream());
OnImageFrameReady?.Invoke(imgSource);
}
catch (Exception e)
{
SendDebugMessage(e.ToString());
}
}
}
I use this function to convert the CVImageBuffer to an UIImage. It also refers to one of Olivia's posts mentioned above (how to convert a CVImageBufferRef to UIImage):
private UIImage GetImageFromImageBuffer(CVImageBuffer imageBuffer)
{
if (!(imageBuffer is CVPixelBuffer pixelBuffer)) return null;
var ciImage = CIImage.FromImageBuffer(pixelBuffer);
var temporaryContext = new CIContext();
var rect = CGRect.FromLTRB(0, 0, pixelBuffer.Width, pixelBuffer.Height);
CGImage cgImage = temporaryContext.CreateCGImage(ciImage, rect);
if (cgImage == null) return null;
var uiImage = UIImage.FromImage(cgImage);
cgImage.Dispose();
return uiImage;
}
Last but not least my tiny little function for debug output, feel free to pimp it as needed for your purpose ;-)
private void SendDebugMessage(string msg)
{
Debug.WriteLine($"VideoDecoder (iOS) - {msg}");
}
Finally, let's have a look at the namespaces used for the code above:
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Net;
using AvcLibrary;
using CoreFoundation;
using CoreGraphics;
using CoreImage;
using CoreMedia;
using CoreVideo;
using Foundation;
using UIKit;
using VideoToolbox;
using Xamarin.Forms;