pd.unique
returns the unique values from an input array, or DataFrame column or index.
The input to this function needs to be one-dimensional, so multiple columns will need to be combined. The simplest way is to select the columns you want and then view the values in a flattened NumPy array. The whole operation looks like this:
>>> pd.unique(df[['Col1', 'Col2']].values.ravel('K'))
array(['Bob', 'Joe', 'Bill', 'Mary', 'Steve'], dtype=object)
Note that ravel()
is an array method that returns a view (if possible) of a multidimensional array. The argument 'K'
tells the method to flatten the array in the order the elements are stored in the memory (pandas typically stores underlying arrays in Fortran-contiguous order; columns before rows). This can be significantly faster than using the method's default 'C' order.
An alternative way is to select the columns and pass them to np.unique
:
>>> np.unique(df[['Col1', 'Col2']].values)
array(['Bill', 'Bob', 'Joe', 'Mary', 'Steve'], dtype=object)
There is no need to use ravel()
here as the method handles multidimensional arrays. Even so, this is likely to be slower than pd.unique
as it uses a sort-based algorithm rather than a hashtable to identify unique values.
The difference in speed is significant for larger DataFrames (especially if there are only a handful of unique values):
>>> df1 = pd.concat([df]*100000, ignore_index=True) # DataFrame with 500000 rows
>>> %timeit np.unique(df1[['Col1', 'Col2']].values)
1 loop, best of 3: 1.12 s per loop
>>> %timeit pd.unique(df1[['Col1', 'Col2']].values.ravel('K'))
10 loops, best of 3: 38.9 ms per loop
>>> %timeit pd.unique(df1[['Col1', 'Col2']].values.ravel()) # ravel using C order
10 loops, best of 3: 49.9 ms per loop
df1.groupby(['A','B']).size().reset_index().rename(columns={0:'count'})
– Paul Rougieux