Assume the following matrix:
myMatrix = [
1 0 1
1 0 0
1 1 1
1 1 1
0 1 1
0 0 0
0 0 0
0 1 0
1 0 0
0 0 0
0 0 0
0 0 1
0 0 1
0 0 1
];
Given the above (and treating each column independently), I'm trying to create a matrix that will contain the number of rows since the last value of 1
has "shown up". For example, in the first column, the first four values would become 0
since there are 0 rows between each of those rows and the previous value of 1
.
Row 5 would become 1
, row 6 = 2
, row 7 = 3
, row 8 = 4
. Since row 9 contains a 1
, it would become 0
and the count starts again with row 10. The final matrix should look like this:
FinalMatrix = [
0 1 0
0 2 1
0 0 0
0 0 0
1 0 0
2 1 1
3 2 2
4 0 3
0 1 4
1 2 5
2 3 6
3 4 0
4 5 0
5 6 0
];
What is a good way of accomplishing something like this?
EDIT: I'm currently using the following code:
[numRow,numCol] = size(myMatrix);
oneColumn = 1:numRow;
FinalMatrix = repmat(oneColumn',1,numCol);
toSubtract = zeros(numRow,numCol);
for m=1:numCol
rowsWithOnes = find(myMatrix(:,m));
for mm=1:length(rowsWithOnes);
toSubtract(rowsWithOnes(mm):end,m) = rowsWithOnes(mm);
end
end
FinalMatrix = FinalMatrix - toSubtract;
which runs about 5 times faster than the bsxfun
solution posted over many trials and data sets (which are about 1500 x 2500 in size). Can the code above be optimized?