921
votes

Here's my code:

def front_back(a, b):
  # +++your code here+++
  if len(a) % 2 == 0 && len(b) % 2 == 0:
    return a[:(len(a)/2)] + b[:(len(b)/2)] + a[(len(a)/2):] + b[(len(b)/2):] 
  else:
    #todo! Not yet done. :P
  return

I'm getting an error in the IF conditional.
What am I doing wrong?

10
Clearly Sergio wanted to know why his code was broken, but I read a bit more into the title of the question. Why wouldn't && be available anyway? == and != are available (but are different from is and is not, I know). Why not include this syntax? Personal preference?physicsmichael
@vgm64: Why include redundant syntax that doesn’t improve a single aspect?Konrad Rudolph
It seems to me that the interpreter should, rather than print out a cryptic "SyntaxError: invalid syntax" - detect that the user has used && and suggest to them that they might want to use the keyword and instead. Same goes for things like ++ and other common operators from other languages.ArtOfWarfare
@physicsmichael "there should be one, and preferably only one, obvious way to do it." import thisNick T
@KonradRudolph It absolutely improves aspects of the language. It is more consistent and intuitive for anyone who has ever used any other language. the fact that this question exists and has as much traffic as it does clearly highlights this issue as a common sticking point for people.jterm

10 Answers

1640
votes

You would want and instead of &&.

252
votes

Python uses and and or conditionals.

i.e.

if foo == 'abc' and bar == 'bac' or zoo == '123':
  # do something
65
votes

I'm getting an error in the IF conditional. What am I doing wrong?

There reason that you get a SyntaxError is that there is no && operator in Python. Likewise || and ! are not valid Python operators.

Some of the operators you may know from other languages have a different name in Python. The logical operators && and || are actually called and and or. Likewise the logical negation operator ! is called not.

So you could just write:

if len(a) % 2 == 0 and len(b) % 2 == 0:

or even:

if not (len(a) % 2 or len(b) % 2):

Some additional information (that might come in handy):

I summarized the operator "equivalents" in this table:

+------------------------------+---------------------+
|  Operator (other languages)  |  Operator (Python)  |
+==============================+=====================+
|              &&              |         and         |
+------------------------------+---------------------+
|              ||              |         or          |
+------------------------------+---------------------+
|              !               |         not         |
+------------------------------+---------------------+

See also Python documentation: 6.11. Boolean operations.

Besides the logical operators Python also has bitwise/binary operators:

+--------------------+--------------------+
|  Logical operator  |  Bitwise operator  |
+====================+====================+
|        and         |         &          |
+--------------------+--------------------+
|         or         |         |          |
+--------------------+--------------------+

There is no bitwise negation in Python (just the bitwise inverse operator ~ - but that is not equivalent to not).

See also 6.6. Unary arithmetic and bitwise/binary operations and 6.7. Binary arithmetic operations.

The logical operators (like in many other languages) have the advantage that these are short-circuited. That means if the first operand already defines the result, then the second operator isn't evaluated at all.

To show this I use a function that simply takes a value, prints it and returns it again. This is handy to see what is actually evaluated because of the print statements:

>>> def print_and_return(value):
...     print(value)
...     return value

>>> res = print_and_return(False) and print_and_return(True)
False

As you can see only one print statement is executed, so Python really didn't even look at the right operand.

This is not the case for the binary operators. Those always evaluate both operands:

>>> res = print_and_return(False) & print_and_return(True);
False
True

But if the first operand isn't enough then, of course, the second operator is evaluated:

>>> res = print_and_return(True) and print_and_return(False);
True
False

To summarize this here is another Table:

+-----------------+-------------------------+
|   Expression    |  Right side evaluated?  |
+=================+=========================+
| `True` and ...  |           Yes           |
+-----------------+-------------------------+
| `False` and ... |           No            |
+-----------------+-------------------------+
|  `True` or ...  |           No            |
+-----------------+-------------------------+
| `False` or ...  |           Yes           |
+-----------------+-------------------------+

The True and False represent what bool(left-hand-side) returns, they don't have to be True or False, they just need to return True or False when bool is called on them (1).

So in Pseudo-Code(!) the and and or functions work like these:

def and(expr1, expr2):
    left = evaluate(expr1)
    if bool(left):
        return evaluate(expr2)
    else:
        return left

def or(expr1, expr2):
    left = evaluate(expr1)
    if bool(left):
        return left
    else:
        return evaluate(expr2)

Note that this is pseudo-code not Python code. In Python you cannot create functions called and or or because these are keywords. Also you should never use "evaluate" or if bool(...).

Customizing the behavior of your own classes

This implicit bool call can be used to customize how your classes behave with and, or and not.

To show how this can be customized I use this class which again prints something to track what is happening:

class Test(object):
    def __init__(self, value):
        self.value = value

    def __bool__(self):
        print('__bool__ called on {!r}'.format(self))
        return bool(self.value)

    __nonzero__ = __bool__  # Python 2 compatibility

    def __repr__(self):
        return "{self.__class__.__name__}({self.value})".format(self=self)

So let's see what happens with that class in combination with these operators:

>>> if Test(True) and Test(False):
...     pass
__bool__ called on Test(True)
__bool__ called on Test(False)

>>> if Test(False) or Test(False):
...     pass
__bool__ called on Test(False)
__bool__ called on Test(False)

>>> if not Test(True):
...     pass
__bool__ called on Test(True)

If you don't have a __bool__ method then Python also checks if the object has a __len__ method and if it returns a value greater than zero. That might be useful to know in case you create a sequence container.

See also 4.1. Truth Value Testing.

NumPy arrays and subclasses

Probably a bit beyond the scope of the original question but in case you're dealing with NumPy arrays or subclasses (like Pandas Series or DataFrames) then the implicit bool call will raise the dreaded ValueError:

>>> import numpy as np
>>> arr = np.array([1,2,3])
>>> bool(arr)
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
>>> arr and arr
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

>>> import pandas as pd
>>> s = pd.Series([1,2,3])
>>> bool(s)
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
>>> s and s
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

In these cases you can use the logical and function from NumPy which performs an element-wise and (or or):

>>> np.logical_and(np.array([False,False,True,True]), np.array([True, False, True, False]))
array([False, False,  True, False])
>>> np.logical_or(np.array([False,False,True,True]), np.array([True, False, True, False]))
array([ True, False,  True,  True])

If you're dealing just with boolean arrays you could also use the binary operators with NumPy, these do perform element-wise (but also binary) comparisons:

>>> np.array([False,False,True,True]) & np.array([True, False, True, False])
array([False, False,  True, False])
>>> np.array([False,False,True,True]) | np.array([True, False, True, False])
array([ True, False,  True,  True])

(1)

That the bool call on the operands has to return True or False isn't completely correct. It's just the first operand that needs to return a boolean in it's __bool__ method:

class Test(object):
    def __init__(self, value):
        self.value = value

    def __bool__(self):
        return self.value

    __nonzero__ = __bool__  # Python 2 compatibility

    def __repr__(self):
        return "{self.__class__.__name__}({self.value})".format(self=self)

>>> x = Test(10) and Test(10)
TypeError: __bool__ should return bool, returned int
>>> x1 = Test(True) and Test(10)
>>> x2 = Test(False) and Test(10)

That's because and actually returns the first operand if the first operand evaluates to False and if it evaluates to True then it returns the second operand:

>>> x1
Test(10)
>>> x2
Test(False)

Similarly for or but just the other way around:

>>> Test(True) or Test(10)
Test(True)
>>> Test(False) or Test(10)
Test(10)

However if you use them in an if statement the if will also implicitly call bool on the result. So these finer points may not be relevant for you.

37
votes

Two comments:

  • Use and and or for logical operations in Python.
  • Use 4 spaces to indent instead of 2. You will thank yourself later because your code will look pretty much the same as everyone else's code. See PEP 8 for more details.
11
votes

You use and and or to perform logical operations like in C, C++. Like literally and is && and or is ||.


Take a look at this fun example,

Say you want to build Logic Gates in Python:

def AND(a,b):
    return (a and b) #using and operator

def OR(a,b):
    return (a or b)  #using or operator

Now try calling them:

print AND(False, False)
print OR(True, False)

This will output:

False
True

Hope this helps!

10
votes

I went with a purlely mathematical solution:

def front_back(a, b):
  return a[:(len(a)+1)//2]+b[:(len(b)+1)//2]+a[(len(a)+1)//2:]+b[(len(b)+1)//2:]
5
votes

Probably this is not best code for this task, but is working -

def front_back(a, b):

 if len(a) % 2 == 0 and len(b) % 2 == 0:
    print a[:(len(a)/2)] + b[:(len(b)/2)] + a[(len(a)/2):] + b[(len(b)/2):]

 elif len(a) % 2 == 1 and len(b) % 2 == 0:
    print a[:(len(a)/2)+1] + b[:(len(b)/2)] + a[(len(a)/2)+1:] + b[(len(b)/2):] 

 elif len(a) % 2 == 0 and len(b) % 2 == 1:
     print a[:(len(a)/2)] + b[:(len(b)/2)+1] + a[(len(a)/2):] + b[(len(b)/2)+1:] 

 else :
     print a[:(len(a)/2)+1] + b[:(len(b)/2)+1] + a[(len(a)/2)+1:] + b[(len(b)/2)+1:]
-4
votes

maybe with & instead % is more fast and mantain readibility

other tests even/odd

x is even ? x % 2 == 0

x is odd ? not x % 2 == 0

maybe is more clear with bitwise and 1

x is odd ? x & 1

x is even ? not x & 1 (not odd)

def front_back(a, b):
    # +++your code here+++
    if not len(a) & 1 and not len(b) & 1:
        return a[:(len(a)/2)] + b[:(len(b)/2)] + a[(len(a)/2):] + b[(len(b)/2):] 
    else:
        #todo! Not yet done. :P
    return
-4
votes

Use of "and" in conditional. I often use this when importing in Jupyter Notebook:

def find_local_py_scripts():
    import os # does not cost if already imported
    for entry in os.scandir('.'):
        # find files ending with .py
        if entry.is_file() and entry.name.endswith(".py") :
            print("- ", entry.name)
find_local_py_scripts()

-  googlenet_custom_layers.py
-  GoogLeNet_Inception_v1.py
-4
votes

A single & (not double &&) is enough or as the top answer suggests you can use 'and'. I also found this in pandas

cities['Is wide and has saint name'] = (cities['Population'] > 1000000) 
& cities['City name'].apply(lambda name: name.startswith('San'))

if we replace the "&" with "and", it won't work.